Skip to main content

Advertisement

Log in

In Silico Prediction of Drug Permeability Across Buccal Mucosa

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop and validate a computational model capable of predicting buccal permeability based on various structural and physicochemical descriptors.

Methods

Apparent permeability coefficients (K p) of 15 different drugs across porcine buccal mucosa were determined. Multiple linear regression (MLR) and maximum likelihood estimations (MLE) were used to develop the model based on a training set of 15 drugs with permeability as the response variable and the various descriptors as the predictor variables. The final model was validated with an external data set consisting of permeability values obtained from the literature.

Results

Drug permeabilities ranged from 30 × 10−6 (nimesulide) to 3.3 × 10−9 cm/s (furosemide). Regression analysis showed that 95% of the variability in permeability data can be explained by a model that includes molecular volume, distribution coefficient at pH 6.8, number of hydrogen bond donors, and number of rotatable bonds. Smaller molecular size, high lipophilicity, lower hydrogen bond capability and greater flexibility were important for permeability. The buccal model was found to have a good predictive capability.

Conclusion

A simple model was developed and validated for predicting the buccal drug permeability. This model will be useful in assessing the feasibility of drugs for transbuccal delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Rathbone, B. Drummond, and I. Tucker. The oral cavity as a site for systemic drug delivery. Adv. Drug Del. Rev. 13:1–22 (1994). doi:10.1016/0169-409X(94)90024-8.

    Article  CAS  Google Scholar 

  2. W. R. Galey, H. K. Lonsdale, and S. Nacht. The in vitro permeability of skin and buccal mucosa to selected drugs and tritiated water. J. Invest. Dermatol. 67:713–717 (1976). doi:10.1111/1523-1747.ep12598596.

    Article  PubMed  CAS  Google Scholar 

  3. C. A. Squier, and P. W. Wertz. Permeability and pathophysiology of oral mucosa. Adv Drug Deliv Rev. 12:13–24 (1993). doi:10.1016/0169-409X(93)90038-6.

    Article  Google Scholar 

  4. A. Kokate, V. Marasanapalle, B. R. Jasti, and X. Li. Physiological and biochemical barriers to drug delivery. In B. R. Jasti (ed.), Design of controlled release drug delivery systems, McGraw-Hill, New York, 2006, p. 41.

    Google Scholar 

  5. P. P. H. Le Brun, P. L. A. Fox, M. E. de Vries, and H. E. Bodde. In vitro penetration of some β-adrenoreceptor blocking drugs through porcine buccal mucosa. Int. J. Pharm. 49:141–145 (1989). doi:10.1016/0378-5173(89)90113-0.

    Article  Google Scholar 

  6. Y. Sudhakar, K. Kuotsu, and A. K. Bandyopadhyay. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J. Control. Release. 114:15–40 (2006). doi:10.1016/j.jconrel.2006.04.012.

    Article  PubMed  CAS  Google Scholar 

  7. C. A. Squier, P. Cox, and P. W. Wertz. Lipid content and water permeability of skin and oral mucosa. J. Invest. Dermatol. 96:123–126 (1991). doi:10.1111/1523-1747.ep12515931.

    Article  PubMed  CAS  Google Scholar 

  8. P. W. Wertz, and C. A. Squier. Cellular and molecular basis of barrier function in oral epithelium. Crit. Rev. Ther. Drug Carrier Syst. 8:237–269 (1991).

    PubMed  CAS  Google Scholar 

  9. C. A. Lesch, C. A. Squier, A. Cruchley, D. M. Williams, and P. Speight. The permeability of human oral mucosa and skin to water. J. Dent. Res. 68:1345–1349 (1989).

    PubMed  CAS  Google Scholar 

  10. R.O. Potts, and R.H. Guy. Predicting skin permeability. Pharm. Res. 9:663–669 (1992). doi:10.1023/A:1015810312465.

    Article  PubMed  CAS  Google Scholar 

  11. A. Malkia, L. Murtomaki, A. Urtti, and K. Kontturi. Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties. Eur. J. Pharm. Sci. 23:13–47 (2004). doi:10.1016/j.ejps.2004.05.009.

    Article  PubMed  CAS  Google Scholar 

  12. Molinspiration. http://www.molinspiration.com (2007).

  13. P. Ertl, B. Rohde, and P. Selzer. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43:3714–3717 (2000). doi:10.1021/jm000942e.

    Article  PubMed  CAS  Google Scholar 

  14. D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45:2615–2623 (2002). doi:10.1021/jm020017n.

    Article  PubMed  CAS  Google Scholar 

  15. C. A. Bergstrom, K. Luthman, and P. Artursson. Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. 22:387–398 (2004). doi:10.1016/j.ejps.2004.04.006.

    Article  PubMed  CAS  Google Scholar 

  16. ChemIDplus. http://chem.sis.nlm.nih.gov/chemidplus/ (2007).

  17. J. Hadgraft, and C. Valenta. pH, pK(a) and dermal delivery. Int. J. Pharm. 200:243–247 (2000). doi:10.1016/S0378-5173(00)00402-6.

    Article  PubMed  CAS  Google Scholar 

  18. K. Fredholt, D. H. Larsen, and C. Larsen. Modification of in vitro drug release rate from oily parenteral depots using a formulation approach. Eur. J. Pharm. Sci. 11:231–237 (2000). doi:10.1016/S0928-0987(00)00104-4.

    Article  PubMed  CAS  Google Scholar 

  19. B. A. Hendriksen, M. V. Felix, and M. B. Bolger. The composite solubility versus pH profile and its role in intestinal absorption prediction. AAPS Pharm. Sci. 5:E4 (2003). doi:10.1208/ps050104.

    Article  Google Scholar 

  20. J. Jacobsen, B. Van deurs, M. Pedersen, and M. R. Rassing. TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int. J. Pharm. 125:165–184 (1995). doi:10.1016/0378-5173(95)00109-V.

    Article  CAS  Google Scholar 

  21. A. Avdeef, P. Artursson, S. Neuhoff, L. Lazorova, J. Grasjo, and S. Tavelin. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method. Eur. J. Pharm. Sci. 24:333–349 (2005). doi:10.1016/j.ejps.2004.11.011.

    Article  PubMed  CAS  Google Scholar 

  22. ACD, Re-evaluation of logP data for 22 drugs and comparison of 6 calculation methods, in: (ACD Labs, 2006).

  23. F. Yoshida, and J. G. Topliss. QSAR model for drug human oral bioavailability. J. Med. Chem. 43:2575–2585 (2000). doi:10.1021/jm0000564.

    Article  PubMed  CAS  Google Scholar 

  24. P. Modamio, C. F. Lastra, and E. L. Marino. A comparative in vitro study of percutaneous penetration of beta-blockers in human skin. Int. J. Pharm. 194:249–259 (2000). doi:10.1016/S0378-5173(99)00380-4.

    Article  PubMed  CAS  Google Scholar 

  25. P. R. B. Fallavena, and E. E. S. Schapoval. pKa determination of nimesulide in methanol–water mixtures by potentiometric titrations. Int. J. Pharm. 158:109–112 (1997). doi:10.1016/S0378-5173(97)00221-4.

    Article  CAS  Google Scholar 

  26. F. Akomeah, T. Nazir, G. P. Martin, and M. B. Brown. Effect of heat on the percutaneous absorption and skin retention of three model penetrants. Eur. J. Pharm. Sci. 21:337–345 (2004). doi:10.1016/j.ejps.2003.10.025.

    Article  PubMed  CAS  Google Scholar 

  27. K. Higaki, M. Asai, T. Suyama, K. Nakayama, K. Ogawara, and T. Kimura. Estimation of intradermal disposition kinetics of drugs: II. Factors determining penetration of drugs from viable skin to muscular layer. Int. J. Pharm. 239:129–141 (2002). doi:10.1016/S0378-5173(02)00084-4.

    Article  PubMed  CAS  Google Scholar 

  28. Merck. Merck Index, New Jersey, 1976.

  29. R. Birudaraj, B. Berner, S. Shen, and X. Li. Buccal permeation of buspirone: mechanistic studies on transport pathways. J Pharm Sci. 94:70–78 (2005). doi:10.1002/jps.20208.

    Article  PubMed  CAS  Google Scholar 

  30. S. Geinoz, R. H. Guy, B. Testa, and P. A. Carrupt. Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation. Pharm. Res. 21:83–92 (2004). doi:10.1023/B:PHAM.0000012155.27488.2b.

    Article  PubMed  CAS  Google Scholar 

  31. NCSS. User’s Guide: Regression and curve fitting, NCCS, Kaysville, Utah, 2006.

    Google Scholar 

  32. C. A. Bergstrom, C. M. Wassvik, U. Norinder, K. Luthman, and P. Artursson. Global and local computational models for aqueous solubility prediction of drug-like molecules. J. Chem. Inf. Comput. Sci. 44:1477–1488 (2004). doi:10.1021/ci049909h.

    PubMed  Google Scholar 

  33. P. W. Wertz, D. C. Swartzendruber, and C. A. Squier. Regional variation in the structure and permeability of oral mucosa and skin. Adv. Drug Deliv. Rev. 12:1–12 (1993). doi:10.1016/0169-409X(93)90037-5.

    Article  Google Scholar 

  34. A. Kokate, X. Li, P. Singh, and B. R. Jasti. Effect of thermodynamic activities of the unionized and ionized species on drug flux across buccal mucosa. J. Pharm. Sci. 97:4294–4306 (2008). doi:10.1002/jps.21301.

    Article  PubMed  CAS  Google Scholar 

  35. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001). doi:10.1016/S0169-409X(00)00128-9.

    Article  PubMed  CAS  Google Scholar 

  36. T. J. Hou, W. Zhang, K. Xia, X. B. Qiao, and X. J. Xu. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J. Chem. Inf. Comput. Sci. 44:1585–1600 (2004). doi:10.1021/ci049884m.

    PubMed  CAS  Google Scholar 

  37. M. J. Campbell. Statistics at square two: Understanding modern statistical applications in medicine. BML Publishing Group, London, 2001.

    Google Scholar 

  38. I. Jae Myung. Tutorial on maximum likelihood estimation. J. Math. Psychol. 47:90–100 (2003). doi:10.1016/S0022-2496(02)00028-7.

    Article  Google Scholar 

  39. J. Linnankoski, J. M. Makela, V. P. Ranta, A. Urtti, and M. Yliperttula. Computational prediction of oral drug absorption based on absorption rate constants in humans. J. Med. Chem. 49:3674–3681 (2006). doi:10.1021/jm051231p.

    Article  PubMed  CAS  Google Scholar 

  40. S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. Lennernas, and A. Karlen. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41:4939–4949 (1998). doi:10.1021/jm9810102.

    Article  PubMed  CAS  Google Scholar 

  41. N. el Tayar, R. S. Tsai, B. Testa, P. A. Carrupt, and A. Leo. Partitioning of solutes in different solvent systems: the contribution of hydrogen-bonding capacity and polarity. J. Pharm. Sci. 80:590–598 (1991). doi:10.1002/jps.2600800619.

    Article  PubMed  Google Scholar 

  42. R. A. Conradi, A. R. Hilgers, N. F. Ho, and P. S. Burton. The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm. Res. 9:435–439 (1992). doi:10.1023/A:1015867608405.

    Article  PubMed  CAS  Google Scholar 

  43. I. Diaz Del Consuelo, G. P. Pizzolato, F. Falson, R. H. Guy, and Y. Jacques. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. J. Pharm. Sci. 94:2777–2788 (2005). doi:10.1002/jps.20409.

    Article  PubMed  Google Scholar 

  44. J. Xiang, X. Fang, and X. Li. Transbuccal delivery of 2′,3′-dideoxycytidine: in vitro permeation study and histological investigation. Int. J. Pharm. 231:57–66 (2002). doi:10.1016/S0378-5173(01)00865-1.

    Article  PubMed  CAS  Google Scholar 

  45. A. H. Shojaei, M. Khan, G. Lim, and R. Khosravan. Transbuccal permeation of a nucleoside analog, dideoxycytidine: effects of menthol as a permeation enhancer. Int. J. Pharm. 192:139–146 (1999). doi:10.1016/S0378-5173(99)00301-4.

    Article  PubMed  CAS  Google Scholar 

  46. V. H. Deneer, G. B. Drese, P. E. Roemele, J. C. Verhoef, A. H. L. Lie, J. H. Kingma, J. R. Brouwers, and H. E. Junginger. Buccal transport of flecainide and sotalol: effect of a bile salt and ionization state. Int. J. Pharm. 241:127–134 (2002). doi:10.1016/S0378-5173(02)00229-6.

    Article  PubMed  CAS  Google Scholar 

  47. M. Artusi, P. Santi, P. Colombo, and H. E. Junginger. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int. J. Pharm. 250:203–213 (2003). doi:10.1016/S0378-5173(02)00545-8.

    Article  PubMed  CAS  Google Scholar 

  48. S. Senel, D. Duchene, A. A. Hincal, Y. Capan, and G. Ponchel. In vitro studies on enhancing effect of sodium glycocholate on transbuccal permeation of morphine hydrochloride. J. Control. Release. 51:107–113 (1998). doi:10.1016/S0168-3659(97)00099-0.

    Article  PubMed  CAS  Google Scholar 

  49. H. M. Nielsen, and M. R. Rassing. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: effect of pH and concentration. Eur. J. Pharm. Sci. 16:151–157 (2002). doi:10.1016/S0928-0987(02)00083-0.

    Article  PubMed  CAS  Google Scholar 

  50. J. A. Nicolazzo, B. L. Reed, and B. C. Finnin. Modification of buccal drug delivery following pretreatment with skin penetration enhancers. J. Pharm. Sci. 93:2054–2063 (2004). doi:10.1002/jps.20113.

    Article  PubMed  CAS  Google Scholar 

  51. H. M. Nielsen, and M. R. Rassing. TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and beta-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int. J. Pharm. 194:155–167 (2000). doi:10.1016/S0378-5173(99)00368-3.

    Article  PubMed  CAS  Google Scholar 

  52. C. A. Squier. Penetration of nicotine and nitrosonornicotine across porcine oral mucosa. J. Appl. Toxicol. 6:123–128 (1986). doi:10.1002/jat.2550060211.

    Article  PubMed  CAS  Google Scholar 

  53. C. L. Adrian, H. B. Olin, K. Dalhoff, and J. Jacobsen. In vivo human buccal permeability of nicotine. Int. J. Pharm. 311:196–202 (2006). doi:10.1016/j.ijpharm.2005.12.039.

    Article  PubMed  CAS  Google Scholar 

  54. M. T. Cronin, J. C. Dearden, G. P. Moss, and G. Murray-Dickson. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur. J. Pharm. Sci. 7:325–330 (1999). doi:10.1016/S0928-0987(98)00041-4.

    Article  PubMed  CAS  Google Scholar 

  55. H. Patel, W. ten Berge, and M. T. Cronin. Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere. 48:603–613 (2002). doi:10.1016/S0045-6535(02)00114-5.

    Article  PubMed  CAS  Google Scholar 

  56. F. Faassen, J. Kelder, J. Lenders, R. Onderwater, and H. Vromans. Physicochemical properties and transport of steroids across Caco-2 cells. Pharm. Res. 20:177–186 (2003). doi:10.1023/A:1022210801734.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskara R. Jasti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokate, A., Li, X., Williams, P.J. et al. In Silico Prediction of Drug Permeability Across Buccal Mucosa. Pharm Res 26, 1130–1139 (2009). https://doi.org/10.1007/s11095-009-9831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9831-4

KEY WORDS

Navigation