Skip to main content
Log in

A Semi-mechanistic Modeling Strategy to Link In Vitro and In Vivo Drug Release for Modified Release Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a semi-mechanistic model linking in vitro to in vivo drug release.

Methods

A nonlinear mixed-effects model describing the in vitro drug release for 6 hydrophilic matrix based modified release formulations across different experimental conditions (pH, rotation speed and ionic strength) was developed. It was applied to in vivo observations of drug release and tablet gastro intestinal (GI) position assessed with magnetic marker monitoring (MMM). By combining the MMM observations with literature information on pH and ionic strength along the GI tract, the mechanical stress in different parts of the GI tract could be estimated in units equivalent to rotation speed in the in vitro USP 2 apparatus.

Results

The mechanical stress in the upper and lower stomach was estimated to 94 and 134 rpm, respectively. For the small intestine and colon the estimates of mechanical stress was 93 and 38 rpm. Predictions of in vivo drug release including between subject/tablet variability was made for other newly developed formulations based on the drug release model and a model describing tablet GI transit.

Conclusion

The paper outlines a modeling approach for predicting in vivo behavior from standard in vitro experiments and support formulation development and quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Tong C, Lozano R, Mao Y, Mirza T, Löbenberg R, Nickerson B, et al. The value of in Vitro dissolution in drug development: a position paper from the AAPS in Vitro release and dissolution focus group. Pharm Technol. 2009;33(4):52–64.

    CAS  Google Scholar 

  2. Azarmi S, Roa W, Löbenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328(1 SPEC. ISS):12–21.

    Article  PubMed  CAS  Google Scholar 

  3. Siewert M. FIP guidelines for dissolution testing of solid oral products. Joint report of the section for official laboratories and medicines control services and the section of industrial pharmacists of the F.I.P. Drugs Made in Germany. 1997;40(4):123–9

  4. Jorgensen ED, Bhagwat D. Development of dissolution tests for oral extended-release products. Pharm Sci Tech Today. 1998;1(3):128–35.

    Article  CAS  Google Scholar 

  5. Garbacz G, Golke B, Wedemeyer RS, Axell M, Söderlind E, Abrahamsson B, et al. Comparison of dissolution profiles obtained from nifedipine extended release once a day products using different dissolution test apparatuses. Eur J Pharm Sci. 2009;38(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  6. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting In vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.

    Article  PubMed  CAS  Google Scholar 

  7. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm Res. 2008;25(7):1663–76.

    Article  PubMed  CAS  Google Scholar 

  8. Jantratid E, De Maio V, Ronda E, Mattavelli V, Vertzoni M, Dressman JB. Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci. 2009;37(3–4):434–41.

    Article  PubMed  CAS  Google Scholar 

  9. Heigoldt U, Sommer F, Daniels R, Wagner KG. Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in vitro dissolution test. Eur J Pharm Biopharm. 2010;76(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  10. Abrahamsson B, Pal A, Sjöberg M, Carlsson M, Laurell E, Brasseur JG. A novel in Vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach. Pharm Res. 2005;22(8):1215–26.

    Article  PubMed  CAS  Google Scholar 

  11. Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–8.

    Article  PubMed  CAS  Google Scholar 

  12. Shono Y, Jantratid E, Janssen N, Kesisoglou F, Mao Y, Vertzoni M, et al. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. Eur J Pharm Biopharm. 2009;73(1):107–14.

    Article  PubMed  CAS  Google Scholar 

  13. Shono Y, Jantratid E, Kesisoglou F, Reppas C, Dressman JB. Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans. Eur J Pharm Biopharm. 2010;76(1):95–104.

    Article  PubMed  CAS  Google Scholar 

  14. Willmann S, Thelen K, Becker C, Dressman JB, Lippert J. Mechanism-based prediction of particle size-dependent dissolution and absorption: Cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 2010;76(1):83–94.

    Article  PubMed  CAS  Google Scholar 

  15. Soto E, Haertter S, Koenen-Bergmann M, Staab A, Trocóniz IF. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27(2):340–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lukacova V, Woltosz WS, Bolger MB. Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release, and intravenous data. AAPS J. 2009;11(2):323–34.

    Article  PubMed  CAS  Google Scholar 

  17. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  PubMed  CAS  Google Scholar 

  18. Tubic-Grozdanis M, Bolger MB, Langguth P. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J. 2008;10(1):213–26.

    Article  PubMed  CAS  Google Scholar 

  19. Willmann S, Edginton AN, Kleine-Besten M, Jantratid E, Thelen K, Dressman JB. Whole-body physiologically based pharmacokinetic population modelling of oral drug administration: inter-individual variability of cimetidine absorption. J Pharm Pharmacol. 2009;61(7):891–9.

    Article  PubMed  CAS  Google Scholar 

  20. Weitschies W, Blume H, Mönnikes H. Magnetic Marker Monitoring: High resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. Eur J Pharm Biopharm. 2009;74(1):93–101.

    Article  PubMed  Google Scholar 

  21. Weitschies W, Hartmann V, Grutzmann R, Breitkreutz J. Determination of the disintegration behavior of magnetically marked tablets. Eur J Pharm Biopharm. 2001;52(2):221–6.

    Article  PubMed  CAS  Google Scholar 

  22. Bergstrand M, Söderlind E, Weitschies W, Karlsson MO. Mechanistic modeling of a magnetic marker monitoring study linking gastrointestinal tablet transit, in vivo drug release, and pharmacokinetics. Clin Pharmacol Ther. 2009 Jul;86(1):77–83.

    Article  PubMed  CAS  Google Scholar 

  23. Johansson S, Cullberg M, Eriksson UG, Elg M, Dunér K, Jensen E, et al. Single-dose pharmacokinetics, pharmacodynamics and safety of AZD0837, a novel oral direct thrombin inhibitor, in young healthy male subjects. Int J Clin Pharm Ther. 2011;49(4):258–67.

    CAS  Google Scholar 

  24. Lip GYH, Lane DA. Does warfarin for stroke thromboprophylaxis protect against MI in atrial fibrillation patients? Am J Med. 2010;123(9):785–9.

    Article  PubMed  CAS  Google Scholar 

  25. Weitschies W, Kosch O, Mönnikes H, Trahms L. Magnetic Marker Monitoring: An application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv Drug Deliv Rev. 2005;57(8):1210–22.

    Article  PubMed  CAS  Google Scholar 

  26. Beal SL, Sheiner LB, Boeckmann AJ. NONMEM User’s Guides. Ellicot City: MD: Icon Development Solutions; 1989–2006.

  27. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  PubMed  CAS  Google Scholar 

  28. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401–21.

    Article  PubMed  Google Scholar 

  29. Bergstrand M, Karlsson MO. Handling Data Below the Limit of Quantification in Mixed Effect Models. AAPS J. 2009;11(2):371–80.

    Article  PubMed  CAS  Google Scholar 

  30. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Meth Prog Biomed. 2005;79(3):241–57.

    Article  Google Scholar 

  31. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)–a Perl module for NONMEM related programming. Comput Meth Prog Biomed. 2004;75(2):85–94.

    Article  Google Scholar 

  32. Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth Prog Biomed. 1999;58(1):51–64.

    Article  CAS  Google Scholar 

  33. Harling K, Ueckert S, Hooker AC, Jonsson EN, Karlsson MO. Xpose and Perl speaks NONMEM (PsN). PAGE 19 (2010) Abstr 1842 [wwwpage-meetingorg/?abstract=1842].

  34. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2009 [2009-12-30]; Available from: http://www.R-project.org.

  35. Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24(12):979–81.

    Article  PubMed  CAS  Google Scholar 

  36. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Euro J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  Google Scholar 

  37. Hopfenberg HB. Controlled release from erodible slabs, cylinders and spheres. Controlled Release Polymeric Formulations. 1976;33:26–32.

    Article  Google Scholar 

  38. Baker RW, Lonsdale HK. Controlled release: mechanisms and rates. Controlled Release of Biologically Active Agents. 1974:15–71.

  39. Bolourchian N, Dadashzadeh S. pH-independent release of propranolol hydrochloride from HPMC-based matrices using organic acids. Daru. 2008;16(3):136–42.

    CAS  Google Scholar 

  40. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: Problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  Google Scholar 

  41. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007 Jul;82(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  42. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988 Aug;29(8):1035–41.

    Article  PubMed  CAS  Google Scholar 

  43. Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005 Dec;50(12):2276–85.

    Article  PubMed  Google Scholar 

  44. Lindahl A, Ungell AL, Knutson L, Lennernas H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res. 1997 Apr;14(4):497–502.

    Article  PubMed  CAS  Google Scholar 

  45. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 2011; in press.

  46. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27(8):886–92.

    Article  PubMed  CAS  Google Scholar 

  47. Yuen KH. The transit of dosage forms through the small intestine. Int J Pharm. 2010;395(1–2):9–16.

    Article  PubMed  CAS  Google Scholar 

  48. Guidance for industry: Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations. Food and Drug Administration. 1997;1–27.

  49. Garbacz G, Klein S, Weitschies W. A biorelevant dissolution stress test device background and experiences. Expert Opinion Drug Deliv. 2010;7(11):1251–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bergstrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergstrand, M., Söderlind, E., Eriksson, U.G. et al. A Semi-mechanistic Modeling Strategy to Link In Vitro and In Vivo Drug Release for Modified Release Formulations. Pharm Res 29, 695–706 (2012). https://doi.org/10.1007/s11095-011-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0594-3

KEY WORDS

Navigation