Skip to main content

Advertisement

Log in

Mass Spectrometry-Based Quantification of CYP Enzymes to Establish In Vitro/In Vivo Scaling Factors for Intestinal and Hepatic Metabolism in Beagle Dog

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Physiologically based models, when verified in pre-clinical species, optimally predict human pharmacokinetics. However, modeling of intestinal metabolism has been a gap. To establish in vitro/in vivo scaling factors for metabolism, the expression and activity of CYP enzymes were characterized in the intestine and liver of beagle dog.

Methods

Microsomal protein abundance in dog tissues was determined using testosterone-6β-hydroxylation and 7-hydroxycoumarin-glucuronidation as markers for microsomal protein recovery. Expressions of 7 CYP enzymes were estimated based on quantification of proteotypic tryptic peptides using multiple reaction monitoring mass spectrometry. CYP3A12 and CYP2B11 activity was evaluated using selective marker reactions.

Results

The geometric mean of total microsomal protein was 51 mg/g in liver and 13 mg/cm in intestine, without significant differences between intestinal segments. CYP3A12, followed by CYP2B11, were the most abundant CYP enzymes in intestine. Abundance and activity were higher in liver than intestine and declined from small intestine to colon.

Conclusions

CYP expression in dog liver and intestine was characterized, providing a basis for in vitro/in vivo scaling of intestinal and hepatic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CYP:

cytochrome P450

DIM:

dog intestinal microsomes

DLM:

dog liver microsomes

LCMS:

liquid chromatography – mass spectrometry

MRM:

multiple reaction monitoring

PBPK:

physiologically based pharmacokinetics

PK:

pharmacokinetics

REFERENCES

  1. Jones HM, Parrott N, Ohlenbusch G, Lave T. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin Pharmacokinet. 2006;45:1213–26.

    Article  PubMed  CAS  Google Scholar 

  2. Parrott N, Lukacova V, Fraczkiewicz G, Bolger MB. Predicting pharmacokinetics of drugs using physiologically based modeling–application to food effects. AAPS J. 2009;11:45–53.

    Article  PubMed  CAS  Google Scholar 

  3. Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61:541–58.

    Article  PubMed  CAS  Google Scholar 

  4. Gertz M, Davis JD, Harrison A, Houston JB, Galetin A. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9:785–95.

    Article  PubMed  CAS  Google Scholar 

  5. Locuson CW, Ethell BT, Voice M, Lee D, Feenstra KL. Evaluation of Escherichia coli membrane preparations of canine CYP1A1, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 with coexpressed canine cytochrome P450 reductase. Drug Metab Dispos. 2009;37:457–61.

    Article  PubMed  CAS  Google Scholar 

  6. Fasco MJ, Silkworth JB, Dunbar DA, Kaminsky LS. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol. 1993;43:226–33.

    PubMed  CAS  Google Scholar 

  7. Zhang QY, Dunbar D, Ostrowska A, Zeisloft S, Yang J, Kaminsky LS. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos. 1999;27:804–9.

    PubMed  CAS  Google Scholar 

  8. Watkins PB. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv Drug Deliv Rev. 1997;27:161–70.

    Article  PubMed  CAS  Google Scholar 

  9. Hakooz N, Ito K, Rawden H, Gill H, Lemmers L, Boobis AR, et al. Determination of a human hepatic microsomal scaling factor for predicting in vivo drug clearance. Pharm Res. 2006;23:533–9.

    Article  PubMed  CAS  Google Scholar 

  10. Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283:1552–62.

    PubMed  CAS  Google Scholar 

  11. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–8.

    PubMed  CAS  Google Scholar 

  12. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8:33–45.

    Article  PubMed  CAS  Google Scholar 

  13. Shou M, Norcross R, Sandig G, Lu P, Li Y, Lin Y, et al. Substrate specificity and kinetic properties of seven heterologously expressed dog cytochromes p450. Drug Metab Dispos. 2003;31:1161–9.

    Article  PubMed  CAS  Google Scholar 

  14. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol. 2009;27:633–41.

    Article  PubMed  CAS  Google Scholar 

  15. Agger SA, Marney LC, Hoofnagle AN. Simultaneous quantification of apolipoprotein A-I and apolipoprotein B by liquid-chromatography-multiple- reaction-monitoring mass spectrometry. Clin Chem. 2010;56:1804–13.

    Article  PubMed  CAS  Google Scholar 

  16. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    Article  PubMed  Google Scholar 

  17. Xia JQ, Sedransk N, Feng X. Variance component analysis of a multi-site study for the reproducibility of multiple reaction monitoring measurements of peptides in human plasma. PLoS One. 2011;6:e14590.

    Article  PubMed  CAS  Google Scholar 

  18. Douglas B, Maechler M. Linear mixed-effects models using S4 classes, R package version 0999375–35, 2010.

  19. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45:511–42.

    Article  PubMed  CAS  Google Scholar 

  20. Jones HM, Gardner IB, Collard WT, Stanley PJ, Oxley P, Hosea NA, et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2011;50:331–47.

    Article  PubMed  CAS  Google Scholar 

  21. Nishibe Y, Wakabayashi M, Harauchi T, Ohno K. Characterization of cytochrome P450 (CYP3A12) induction by rifampicin in dog liver. Xenobiotica. 1998;28:549–57.

    Article  PubMed  CAS  Google Scholar 

  22. Kyokawa Y, Nishibe Y, Wakabayashi M, Harauchi T, Maruyama T, Baba T, et al. Induction of intestinal cytochrome P450 (CYP3A) by rifampicin in beagle dogs. Chem Biol Interact. 2001;134:291–305.

    Article  PubMed  CAS  Google Scholar 

  23. Smith R, Jones RD, Ballard PG, Griffiths HH. Determination of microsome and hepatocyte scaling factors for in vitro/in vivo extrapolation in the rat and dog. Xenobiotica. 2008;38:1386–98.

    Article  PubMed  CAS  Google Scholar 

  24. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36:2405–9.

    Article  PubMed  CAS  Google Scholar 

  25. Bäärnhielm C, Dahlbäck H, Skånberg I. In vivo pharmacokinetics of felodipine predicted from in vitro studies in rat, dog and man. Acta Pharmacol Toxicol (Copenh). 1986;59:113–22.

    Article  Google Scholar 

  26. Miliotis T, Ali L, Palm JE, Lundqvist AJ, Ahnoff M, Andersson TB, et al. Development of a highly sensitive method using LC-MRM to quantify membrane P-glycoprotein in biological matrices and relationship to transport function. Drug Metab Dispos. 2011;39:2440–9.

    Article  PubMed  CAS  Google Scholar 

  27. Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-Brain Barrier (BBB) Pharmacoproteomics (PPx): Reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011.

  28. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci. 2010;100:341–52.

    Article  PubMed  Google Scholar 

  29. Sakamoto K, Kirita S, Baba T, Nakamura Y, Yamazoe Y, Kato R, et al. A new cytochrome P450 form belonging to the CYP2D in dog liver microsomes: purification, cDNA cloning, and enzyme characterization. Arch Biochem Biophys. 1995;319:372–82.

    Article  PubMed  CAS  Google Scholar 

  30. Mitschke D, Reichel A, Fricker G, Moenning U. Characterization of cytochrome P450 protein expression along the entire length of the intestine of male and female rats. Drug Metab Dispos. 2008;36:1039–45.

    Article  PubMed  CAS  Google Scholar 

  31. Blaisdell J, Goldstein JA, Bai SA. Isolation of a new canine cytochrome P450 CDNA from the cytochrome P450 2C subfamily (CYP2C41) and evidence for polymorphic differences in its expression. Drug Metab Dispos. 1998;26:278–83.

    PubMed  CAS  Google Scholar 

  32. Perrett HF, Barter ZE, Jones BC, Yamazaki H, Tucker GT, Rostami-Hodjegan A. Disparity in holoprotein/apoprotein ratios of different standards used for immunoquantification of hepatic cytochrome P450 enzymes. Drug Metab Dispos. 2007;35:1733–6.

    Article  PubMed  CAS  Google Scholar 

  33. Achour B, Barber J, Rostami-Hodjegan A. Cytochrome P450 Pig Liver Pie: Determination of individual cytochrome P450 isoenzyme contents in microsomes from two pig livers using LC MS. Drug Metab Dispos. 2011.

  34. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25:1469–83.

    Article  PubMed  CAS  Google Scholar 

  35. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther. 2006;318:1220–9.

    Article  PubMed  CAS  Google Scholar 

  36. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38:1147–58.

    Article  PubMed  CAS  Google Scholar 

  37. Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76:391.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors thank Pascal Schenk and Paul Schmid for their contribution in setting up the analytical methods for diazepam metabolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Parrott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkinen, A.T., Friedlein, A., Lamerz, J. et al. Mass Spectrometry-Based Quantification of CYP Enzymes to Establish In Vitro/In Vivo Scaling Factors for Intestinal and Hepatic Metabolism in Beagle Dog. Pharm Res 29, 1832–1842 (2012). https://doi.org/10.1007/s11095-012-0707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0707-7

KEY WORDS

Navigation