Skip to main content

Advertisement

Log in

Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions

Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and drug-drug interactions (DDI) of pravastatin, using the in vitro transport parameters.

Methods

In vitro hepatic sinusoidal active uptake, passive diffusion and canalicular efflux intrinsic clearance values were determined using sandwich-culture human hepatocytes (SCHH) model. PBPK modeling and simulations were implemented in Simcyp (Sheffield, UK). DDI with OATP1B1 inhibitors, cyclosporine, gemfibrozil and rifampin, was also simulated using inhibition constant (Ki) values.

Results

SCHH studies suggested active uptake, passive diffusion and efflux intrinsic clearance values of 1.9, 0.5 and 1.2 μL/min/106cells, respectively, for pravastatin. PBPK model developed, using transport kinetics and scaling factors, adequately described pravastatin oral plasma concentration-time profiles at different doses (within 20% error). Model based prediction of DDIs with gemfibrozil and rifampin was similar to that observed. However, pravastatin-cyclosporine DDI was underpredicted (AUC ratio 4.4 Vs ~10). Static (R-value) model predicted higher magnitude of DDI compared to the AUC ratio predicted by the PBPK modeling.

Conclusions

PBPK model of pravastatin, based on in vitro transport parameters and scaling factors, was developed. The approach described can be used to predict the pharmacokinetics and DDIs associated with hepatic uptake transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

area under the plasma concentration-time curve

BCRP:

breast cancer resistance protein

Cmax:

maximum plasma concentration

DDI:

drug-drug interaction

Fa:

fraction absorbed

fu:

fraction unbound

fuinc :

fraction unbound in the incubations

Iin,max :

maximum inhibitor concentration at the inlet to the liver

Ki:

inhibition constant

MRP:

multidrug resistance-associated protein

OATP:

organic anion transporting polypeptide

PBPK:

physiologically based pharmacokinetic

PPE:

percentage prediction error

SCHH:

sandwich cultured human hepatocyte

SF:

scaling factor

REFERENCES

  1. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.

    PubMed  CAS  Google Scholar 

  2. Feng MR, Lou X, Brown RR, Hutchaleelaha A. Allometric pharmacokinetic scaling: towards the prediction of human oral pharmacokinetics. Pharm Res. 2000;17(4):410–8.

    Article  PubMed  CAS  Google Scholar 

  3. Huang SM, Rowland M. The role of physiologically based pharmacokinetic modeling in regulatory review. Clin Pharmacol Ther. 2012;91(3):542–9.

    Article  PubMed  CAS  Google Scholar 

  4. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    Article  PubMed  CAS  Google Scholar 

  5. Ito K, Sugiyama Y. Use of clearance concepts and modeling techniques in the prediction of metabolic drug-drug interactions. Trends Pharmacol Sci. 2010;31(8):351–5.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S.

    Article  PubMed  CAS  Google Scholar 

  7. USFDA. Drug interaction studies - study design, data analysis, implications for dosing, and labeling recommendations. Center for Drug Evaluation and Research (CDER). 2012.

  8. De Buck SS, Mackie CE. Physiologically based approaches towards the prediction of pharmacokinetics: in vitro-in vivo extrapolation. Expert Opin Drug Metab Toxicol. 2007;3(6):865–78.

    Article  PubMed  Google Scholar 

  9. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

    Article  PubMed  CAS  Google Scholar 

  10. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.

    Article  PubMed  Google Scholar 

  11. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, et al. pH-dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9(5):1199–212.

    Google Scholar 

  12. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  13. Fenner KS, Jones HM, Ullah M, Kempshall S, Dickins M, Lai Y, et al. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica. 2012;42(1):28–45.

    Article  PubMed  CAS  Google Scholar 

  14. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  PubMed  CAS  Google Scholar 

  15. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705.

    Article  PubMed  CAS  Google Scholar 

  16. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.

    Article  PubMed  CAS  Google Scholar 

  17. Akao H, Polisecki E, Kajinami K, Trompet S, Robertson M, Ford I, et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis. 2012;220(2):413–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol. 2009;5(7):703–29.

    Article  PubMed  CAS  Google Scholar 

  19. Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M, Lutjohann D, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics. 2005;15(5):303–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73(6):554–65.

    Article  PubMed  CAS  Google Scholar 

  21. Singhvi SM, Pan HY, Morrison RA, Willard DA. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol. 1990;29(2):239–43.

    Article  PubMed  CAS  Google Scholar 

  22. Jones HM, Barton HA, Lai Y, Bi YA, Kimoto E, Kempshall S, et al. Mechanistic pharmacokinetic modelling for the prediction of transporter-mediated disposition in human from sandwich culture human hepatocyte data. Drug Metab Dispos. 2012.

  23. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009;328(2):652–62.

    Article  PubMed  CAS  Google Scholar 

  24. Ghibellini G, Leslie EM, Brouwer KL. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol Pharm. 2006;3(3):198–211.

    Article  PubMed  CAS  Google Scholar 

  25. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos. 2006;34(9):1658–65.

    Article  PubMed  CAS  Google Scholar 

  26. Li N, Singh P, Mandrell KM, Lai Y. Improved extrapolation of hepatobiliary clearance from in vitro sandwich cultured rat hepatocytes through absolute quantification of hepatobiliary transporters. Mol Pharm. 2010;7(3):630–41.

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KL. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther. 1999;289(3):1592–9.

    PubMed  CAS  Google Scholar 

  28. Hedman M, Neuvonen PJ, Neuvonen M, Holmberg C, Antikainen M. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin Pharmacol Ther. 2004;75(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  29. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther. 2003;73(6):538–44.

    Article  PubMed  CAS  Google Scholar 

  30. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Effect of rifampicin on pravastatin pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 2004;57(2):181–7.

    Article  PubMed  CAS  Google Scholar 

  31. Park JW, Siekmeier R, Merz M, Krell B, Harder S, Marz W, et al. Pharmacokinetics of pravastatin in heart-transplant patients taking cyclosporin A. Int J Clin Pharmacol Ther. 2002;40(10):439–50.

    PubMed  CAS  Google Scholar 

  32. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  PubMed  CAS  Google Scholar 

  33. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  PubMed  CAS  Google Scholar 

  34. Amundsen R, Christensen H, Zabihyan B, Asberg A. Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab Dispos. 2010;38(9):1499–504.

    Article  PubMed  CAS  Google Scholar 

  35. Fehrenbach T, Cui Y, Faulstich H, Keppler D. Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn Schmiedebergs Arch Pharmacol. 2003;368(5):415–20.

    Article  PubMed  CAS  Google Scholar 

  36. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos. 2006;34(7):1229–36.

    Article  PubMed  CAS  Google Scholar 

  37. Konig J, Glaeser H, Keiser M, Mandery K, Klotz U, Fromm MF. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metab Dispos. 2011;39(6):1097–102.

    Article  PubMed  Google Scholar 

  38. Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther. 2003;304(2):610–6.

    Article  PubMed  CAS  Google Scholar 

  39. Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):773–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hinton LK, Galetin A, Houston JB. Multiple inhibition mechanisms and prediction of drug-drug interactions: status of metabolism and transporter models as exemplified by gemfibrozil-drug interactions. Pharm Res. 2008;25(5):1063–74.

    Article  PubMed  CAS  Google Scholar 

  41. Nakagomi-Hagihara R, Nakai D, Tokui T, Abe T, Ikeda T. Gemfibrozil and its glucuronide inhibit the hepatic uptake of pravastatin mediated by OATP1B1. Xenobiotica. 2007;37(5):474–86.

    Article  PubMed  CAS  Google Scholar 

  42. Schneck DW, Birmingham BK, Zalikowski JA, Mitchell PD, Wang Y, Martin PD, et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 2004;75(5):455–63.

    Article  PubMed  CAS  Google Scholar 

  43. Yamazaki M, Li B, Louie SW, Pudvah NT, Stocco R, Wong W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica. 2005;35(7):737–53.

    Article  PubMed  CAS  Google Scholar 

  44. Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40(3):163–76.

    Article  PubMed  CAS  Google Scholar 

  45. De Bruyn T, Fattah S, Stieger B, Augustijns P, Annaert P. Sodium fluorescein is a probe substrate for hepatic drug transport mediated by OATP1B1 and OATP1B3. J Pharm Sci. 2011;100(11):5018–30.

    Article  PubMed  Google Scholar 

  46. Lau YY, Huang Y, Frassetto L, Benet LZ. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2007;81(2):194–204.

    Article  PubMed  CAS  Google Scholar 

  47. Karlgren M, Ahlin G, Bergstrom CA, Svensson R, Palm J, Artursson P. In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res. 2012;29(2):411–26.

    Article  PubMed  CAS  Google Scholar 

  48. Brandt RB, Laux JE, Yates SW. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes. Biochem Med Metab Biol. 1987;37(3):344–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bergman AJ, Burke J, Larson P, Johnson-Levonas AO, Reyderman L, Statkevich P, et al. Effects of ezetimibe on cyclosporine pharmacokinetics in healthy subjects. J Clin Pharmacol. 2006;46(3):321–7.

    Article  PubMed  CAS  Google Scholar 

  50. Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Mechanism-based inactivation of CYP2C8 by gemfibrozil occurs rapidly in humans. Clin Pharmacol Ther. 2011;89(4):579–86.

    Article  PubMed  CAS  Google Scholar 

  51. Kajosaari LI, Niemi M, Neuvonen M, Laitila J, Neuvonen PJ, Backman JT. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther. 2005;78(4):388–99.

    Article  PubMed  CAS  Google Scholar 

  52. Tornio A, Niemi M, Neuvonen M, Laitila J, Kalliokoski A, Neuvonen PJ, et al. The effect of gemfibrozil on repaglinide pharmacokinetics persists for at least 12 h after the dose: evidence for mechanism-based inhibition of CYP2C8 in vivo. Clin Pharmacol Ther. 2008;84(3):403–11.

    Article  PubMed  CAS  Google Scholar 

  53. Kato M, Shitara Y, Sato H, Yoshisue K, Hirano M, Ikeda T, et al. The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharm Res. 2008;25(8):1891–901.

    Article  PubMed  CAS  Google Scholar 

  54. Deng S, Chen XP, Cao D, Yin T, Dai ZY, Luo J, et al. Effects of a concomitant single oral dose of rifampicin on the pharmacokinetics of pravastatin in a two-phase, randomized, single-blind, placebo-controlled, crossover study in healthy Chinese male subjects. Clin Ther. 2009;31(6):1256–63.

    Article  PubMed  CAS  Google Scholar 

  55. Neuvonen PJ, Backman JT, Niemi M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet. 2008;47(7):463–74.

    Article  PubMed  CAS  Google Scholar 

  56. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci. 2006;27(5):425–46.

    Article  PubMed  CAS  Google Scholar 

  57. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306.

    Article  PubMed  CAS  Google Scholar 

  58. Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 2002;36(2):288–95.

    Article  PubMed  CAS  Google Scholar 

  59. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–81.

    Article  PubMed  CAS  Google Scholar 

  60. Niemi M, Arnold KA, Backman JT, Pasanen MK, Godtel-Armbrust U, Wojnowski L, et al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet Genomics. 2006;16(11):801–8.

    Article  PubMed  CAS  Google Scholar 

  61. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  62. Varma MV, Rotter CJ, Chupka J, Whalen KM, Duignan DB, Feng B, et al. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1. Mol Pharm. 2011;8(4):1303–13.

    Article  PubMed  CAS  Google Scholar 

  63. Watanabe T, Kusuhara H, Debori Y, Maeda K, Kondo T, Nakayama H, et al. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011;39(6):1031–8.

    Article  PubMed  CAS  Google Scholar 

  64. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 2002;30(12):1497–503.

    Article  PubMed  CAS  Google Scholar 

  65. Austin RP, Barton P, Mohmed S, Riley RJ. The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab Dispos. 2005;33(3):419–25.

    Article  PubMed  CAS  Google Scholar 

  66. Panchagnula R, Kaur KJ, Singh I, Kaul CL. Bioequivalence of rifampicin when administered as a fixed-dose combined formulation of four drugs versus separate formulations. Methods Find Exp Clin Pharmacol. 2000;22(9):689–94.

    Article  PubMed  CAS  Google Scholar 

  67. Yamazaki M, Tokui T, Ishigami M, Sugiyama Y. Tissue-selective uptake of pravastatin in rats: contribution of a specific carrier-mediated uptake system. Biopharm Drug Dispos. 1996;17(9):775–89.

    Article  PubMed  CAS  Google Scholar 

  68. Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–108.

    Article  PubMed  CAS  Google Scholar 

  69. Todd PA, Ward A. Gemfibrozil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in dyslipidaemia. Drugs. 1988;36(3):314–39.

    Article  PubMed  CAS  Google Scholar 

  70. Kurokawa N, Kadobayashi M, Yamamoto K, Arakawa Y, Sawada M, Takahara S, et al. In-vivo distribution and erythrocyte binding characteristics of cyclosporin in renal transplant patients. J Pharm Pharmacol. 1996;48(6):553–9.

    Article  PubMed  CAS  Google Scholar 

  71. Ptachcinski RJ, Venkataramanan R, Rosenthal JT, Burckart GJ, Taylor RJ, Hakala TR. Cyclosporine kinetics in renal transplantation. Clin Pharmacol Ther. 1985;38(3):296–300.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors would like to thank Emi Kimoto and Yi-An Bi for conducting the SCHH studies, and Larry Tremaine and Dennis Scott for the valuable suggestions on the manuscript. All authors are full-time employees of Pfizer Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manthena V. S. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, M.V.S., Lai, Y., Feng, B. et al. Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions. Pharm Res 29, 2860–2873 (2012). https://doi.org/10.1007/s11095-012-0792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0792-7

KEY WORDS

Navigation