Skip to main content
Log in

Interspecies Modeling and Prediction of Human Exenatide Pharmacokinetics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a model-based approach for interspecies scaling of the preclinical pharmacokinetics of exenatide and to predict concentration-time profiles in humans.

Methods

A target-mediated drug disposition (TMDD) model was simultaneously fit to concentration-time profiles of exenatide over a wide range of intravenous (IV) and subcutaneous (SC) doses obtained from mice, rats, and monkeys. Allometric relationships were incorporated into the model to scale parameters based on species body weight. Human pharmacokinetic profiles following IV and SC administration were simulated using the final model structure and parameter estimates and compared to clinical data.

Results

The final model provided a good simultaneous fit to all animal data and reasonable parameter estimates. Exenatide receptor binding affinity and baseline receptor concentrations were species-dependent. Absorption parameters from rat provided the best prediction of exenatide SC absorption in humans, but good predictions could also be obtained using allometric scaling of preclinical absorption parameters.

Conclusions

A TMDD model combined with allometric scaling was successfully used to simultaneously describe preclinical data for exenatide from three animal species following both IV and SC administration. The majority of model parameters could be shared among the animal species and further used for projecting exenatide behavior in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267(11):7402–5.

    PubMed  CAS  Google Scholar 

  2. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268(26):19650–5.

    PubMed  CAS  Google Scholar 

  3. Gallwitz B, Ropeter T, Morys-Wortmann C, Mentlein R, Siegel EG, Schmidt WE. GLP-1-analogues resistant to degradation by dipeptidyl-peptidase IV in vitro. Regul Pept. 2000;86(1–3):103–11.

    Article  PubMed  CAS  Google Scholar 

  4. Parkes D, Jodka C, Smith P, Nayak S, Rinehart L, Gingerich R, et al. Pharmacokinetic actions of exendin-4 in the rat: comparison with glucagon-like peptide-1. Drug Dev Res. 2001;53(4):260–7.

    Article  CAS  Google Scholar 

  5. Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48(5):736–43.

    Article  PubMed  CAS  Google Scholar 

  6. Parkes DG, Pittner R, Jodka C, Smith P, Young A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism. 2001;50(5):583–9.

    Article  PubMed  CAS  Google Scholar 

  7. Arakawa M, Ebato C, Mita T, Hirose T, Kawamori R, Fujitani Y, et al. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem Biophys Res Commun. 2009;390(3):809–14.

    Article  PubMed  CAS  Google Scholar 

  8. Gedulin BR, Smith PA, Jodka CM, Chen K, Bhavsar S, Nielsen LL, et al. Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration. Int J Pharm. 2008;356(1–2):231–8.

    Article  PubMed  CAS  Google Scholar 

  9. Ai G, Chen Z, Shan C, Che J, Hou Y, Cheng Y. Single- and multiple-dose pharmacokinetics of exendin-4 in rhesus monkeys. Int J Pharm. 2008;353(1–2):56–64.

    Article  PubMed  CAS  Google Scholar 

  10. Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko WJ. Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-beta1a in monkeys. J Pharmacol Exp Ther. 2003;306(1):262–70.

    Article  PubMed  CAS  Google Scholar 

  11. Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35(9):1672–8.

    Article  PubMed  CAS  Google Scholar 

  12. Gao W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of exendin-4 in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther. 2011;336(3):881–90.

    Article  PubMed  CAS  Google Scholar 

  13. Dedrick RL. Animal scale-up. J Pharmacokinet Biopharm. 1973;1(5):435–61.

    Article  PubMed  CAS  Google Scholar 

  14. Mahmood I, Balian JD. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica. 1996;26(9):887–95.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmood I. Application of fixed exponent 0.75 to the prediction of human drug clearance: an inaccurate and misleading concept. Drug Metabol Drug Interact. 2009;24(1):57–81.

    Article  PubMed  CAS  Google Scholar 

  16. McDonald TA, Zepeda ML, Tomlinson MJ, Bee WH, Ivens IA. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr Opin Mol Ther. 2010;12(4):461–70.

    PubMed  CAS  Google Scholar 

  17. Li L, Yang G, Li Q, Tan X, Liu H, Tang Y, et al. Exenatide prevents fat-induced insulin resistance and raises adiponectin expression and plasma levels. Diabetes Obes Metab. 2008;10(10):921–30.

    Article  PubMed  CAS  Google Scholar 

  18. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  PubMed  CAS  Google Scholar 

  19. Copley K, McCowen K, Hiles R, Nielsen LL, Young A, Parkes DG. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7(4):367–74.

    Article  PubMed  CAS  Google Scholar 

  20. Widmann C, Dolci W, Thorens B. Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas. Biochem J. 1995;310(Pt 1):203–14.

    PubMed  CAS  Google Scholar 

  21. Kagan L, Abraham AK, Harrold JM, Mager DE. Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res. 2010;27(5):920–32.

    Article  PubMed  CAS  Google Scholar 

  22. Fineman M, Phillips L, Jaworowicz DJ, Cirincione B, Ludwig E, Taylor K, et al., editors. Model-based evaluations to select and confirm doses in the clinical development of exenatide. American Society for Clinical Pharmacology and Therapeutics; 2007 March 21–24; Aneheim, CA.

  23. Cosson VF, Fuseau E, Efthymiopoulos C, Bye A. Mixed effect modeling of sumatriptan pharmacokinetics during drug development. I: Interspecies allometric scaling. J Pharmacokinet Biopharm. 1997;25(2):149–67.

    Article  PubMed  CAS  Google Scholar 

  24. Martin-Jimenez T, Riviere JE. Mixed-effects modeling of the interspecies pharmacokinetic scaling of oxytetracycline. J Pharm Sci. 2002;91(2):331–41.

    Article  PubMed  CAS  Google Scholar 

  25. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res. 1991;8(11):1351–9.

    Article  PubMed  CAS  Google Scholar 

  26. Gao W, Jusko WJ. Target-mediated pharmacokinetic and pharmacodynamic model of exendin-4 in rats, monkeys, and humans. Drug Metab Dispos. 2012;40(5):990–7.

    Article  PubMed  CAS  Google Scholar 

  27. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.

    Article  PubMed  CAS  Google Scholar 

  28. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Identification of specific binding sites for glucagon-like peptide-1 on the posterior lobe of the rat pituitary. Neuroendocrinology. 1995;62(2):130–4.

    Article  PubMed  CAS  Google Scholar 

  29. Satoh F, Beak SA, Small CJ, Falzon M, Ghatei MA, Bloom SR, et al. Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocrinology. 2000;141(4):1301–9.

    Article  PubMed  CAS  Google Scholar 

  30. Chicchi GG, Cascieri MA, Graziano MP, Calahan T, Tota MR. Fluorescein-Trp25-exendin-4, a biologically active fluorescent probe for the human GLP-1 receptor. Peptides. 1997;18(2):319–21.

    Article  PubMed  CAS  Google Scholar 

  31. Schepp W, Schmidtler J, Riedel T, Dehne K, Schusdziarra V, Holst JJ, et al. Exendin-4 and exendin-(9–39)NH2: agonist and antagonist, respectively, at the rat parietal cell receptor for glucagon-like peptide-1-(7–36)NH2. Eur J Pharmacol. 1994;269(2):183–91.

    Article  PubMed  CAS  Google Scholar 

  32. Kagan L, Turner MR, Balu-Iyer SV, Mager DE. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res. 2012;29(2):490–9.

    Article  PubMed  CAS  Google Scholar 

  33. Macdougall IC, Jones JM, Robinson MI, Miles JB, Coles GA, Williams JD. Subcutaneous erythropoietin therapy: comparison of three different sites of injection. Contrib Nephrol. 1991;88:152–6. discussion 7–8.

    PubMed  CAS  Google Scholar 

  34. Sinha VK, Vaarties K, De Buck SS, Fenu LA, Nijsen M, Gilissen RA, et al. Towards a better prediction of peak concentration, volume of distribution and half-life after oral drug administration in man, using allometry. Clin Pharmacokinet. 2011;50(5):307–18.

    Article  PubMed  Google Scholar 

  35. Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm Res. 1998;15(11):1792–5.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem. 2003;38(3):233–43.

    Article  PubMed  CAS  Google Scholar 

  37. Jolling K, Perez Ruixo JJ, Hemeryck A, Vermeulen A, Greway T. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci. 2005;24(5):465–75.

    Article  PubMed  CAS  Google Scholar 

  38. Fehse F, Trautmann M, Holst JJ, Halseth AE, Nanayakkara N, Nielsen LL, et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2005;90(11):5991–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62(2):173–81.

    PubMed  CAS  Google Scholar 

  40. Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology. 2010;151(4):1473–86.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported, in part, by NIH grants GM57980 and HD071594. We thank Dr. John M. Harrold for his help in developing the MATLAB code for this project and Amylin Pharmaceuticals, Inc. for providing select preclinical and clinical datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Mager, D.E. & Kagan, L. Interspecies Modeling and Prediction of Human Exenatide Pharmacokinetics. Pharm Res 30, 751–760 (2013). https://doi.org/10.1007/s11095-012-0917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0917-z

KEY WORDS

Navigation