Skip to main content

Advertisement

Log in

Quantitative ADME Proteomics – CYP and UGT Enzymes in the Beagle Dog Liver and Intestine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine.

Methods

Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry.

Results

Seven and two CYPs were present in the liver and intestine, respectively. CYP3A12 was the most abundant CYP in both tissues. Seven UGT enzymes were quantified in the liver and seven in the intestine although UGT1A11 and UGT1A9 were present only in the intestine and UGT1A7 and UGT2B31 were found only in the liver. UGT1A11 and UGT1A2 were the most abundant UGTs in the intestine and UGT2B31 was the most abundant UGT in the liver. Summed abundance of UGT enzymes was similar to the sum of CYP enzymes in the liver whereas intestinal UGTs were up to four times more abundant than CYPs. The estimated coefficients of variation of abundance estimates in the livers of 14 donors were separated into biological and technical components which ranged from 14 to 49% and 20 to 39%, respectively.

Conclusions

Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sakamoto A, Matsumaru T, Ishiguro N, et al. Reliability and robustness of simultaneous absolute quantification of drug transporters, cytochrome P450 enzymes, and Udp-glucuronosyltransferases in human liver tissue by multiplexed MRM/selected reaction monitoring mode tandem mass spectrometry with nano-liquid chromatography. J Pharm Sci. 2011;100:4037–43.

    Article  CAS  PubMed  Google Scholar 

  2. Miliotis T, Ali L, Palm JE, et al. Development of a Highly Sensitive Method using LC-MRM to Quantify Membrane P-glycoprotein in Biological Matrices and Relationship to Transport Function. Drug Metab Dispos. 2011;39:2440–9.

    Article  CAS  PubMed  Google Scholar 

  3. Harbourt DE, Fallon JK, Ito S, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography–tandem mass spectrometry. Anal Chem. 2011;84:98–105.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Harwood MD, Neuhoff S, Carlson GL, Warhurst G, Rostami-Hodjegan A. Absolute abundance and function of intestinal drug transporters: a prerequisite for fully mechanistic in vitro-in vivo extrapolation of oral drug absorption. Biopharm Drug Dispos. 2013;34:2–28.

    Article  CAS  PubMed  Google Scholar 

  5. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev. 2007;6:140–8.

    CAS  Google Scholar 

  6. Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica. 2011;41:623–38.

    Article  CAS  PubMed  Google Scholar 

  7. Barter ZE, Tucker GT, Rowland-Yeo K. Differences in cytochrome p450-mediated pharmacokinetics between Chinese and Caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2013;52:1085–100.

    Article  CAS  PubMed  Google Scholar 

  8. Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood–brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339:579–88.

    Article  CAS  PubMed  Google Scholar 

  9. Heikkinen AT, Fowler S, Gray L, et al. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome p450 mediated metabolism in beagle dog gut wall and liver. Mol Pharm. 2013;10:1388–99.

    Article  CAS  PubMed  Google Scholar 

  10. Prasad B, Evers R, Gupta A, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42:78–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45:511–42.

    Article  CAS  PubMed  Google Scholar 

  12. Rowland M, Peck C, Tucker G. Physiologically-Based Pharmacokinetics in Drug Development and Regulatory Science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    Article  CAS  PubMed  Google Scholar 

  13. Garren KW, Rahim S, Marsh K, Morris JB. Bioavailability of generic ritonavir and Lopinavir/ritonavir tablet products in a dog model. J Pharm Sci. 2010;99:626–31.

    CAS  PubMed  Google Scholar 

  14. Paulson SK, Vaughn MB, Jessen SM, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297:638–45.

    CAS  PubMed  Google Scholar 

  15. Xia B, Heimbach T, Lin TH, et al. Utility of physiologically based modeling and preclinical in vitro/in vivo data to mitigate positive food effect in a BCS class 2 compound. AAPS PharmSciTech. 2013;14:1255–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kuentz M, Nick S, Parrott N, Röthlisberger D. A strategy for preclinical formulation development using GastroPlus™ as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharm Sci. 2006;27:91–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kesisoglou F. Use of preclinical dog studies and absorption modeling to facilitate late stage formulation bridging for a BCS II drug candidate. AAPS PharmSciTech. 2013.

  18. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3:123–31.

    Article  CAS  PubMed  Google Scholar 

  19. Lui CY, Amidon GL, Berardi RR, et al. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75:271–4.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez MN, Papich MG. Factors influencing the gastric residence of dosage forms in dogs. J Pharm Sci. 2009;98:844–60.

    Article  CAS  PubMed  Google Scholar 

  21. Soars MG, Riley RJ, Findlay KAB, Coffey MJ, Burchell B. Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab Dispos. 2001;29:121–6.

    CAS  PubMed  Google Scholar 

  22. Prueksaritanont T, Gorham LM, Hochman JH, Tran LO, Vyas KP. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in caco-2 cells. Drug Metab Dispos. 1996;24:634–42.

    CAS  PubMed  Google Scholar 

  23. Arndt M, Chokshi H, Tang K, et al. Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state. Eur J Pharm Biopharm. 2013;84:633–41.

    Article  CAS  PubMed  Google Scholar 

  24. Heikkinen AT, Friedlein A, Lamerz J, et al. Mass spectrometry-based quantification of CYP enzymes to establish in vitro - in vivo scaling factors for intestinal and hepatic metabolism in beagle Dog. Pharm Res. 2012;29:1832–42.

    Article  CAS  PubMed  Google Scholar 

  25. Hakooz N, Ito K, Rawden H, et al. Determination of a human hepatic microsomal scaling factor for predicting in vivo drug clearance. Pharm Res. 2006;23:533–9.

    Article  CAS  PubMed  Google Scholar 

  26. Martinez MN, Antonovic L, Court M, et al. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev. 2013;45:218–30.

    Article  CAS  PubMed  Google Scholar 

  27. Shou M, Norcross R, Sandig G, et al. Substrate specificity and kinetic properties of seven heterologously expressed dog cytochromes p450. Drug Metab Dispos. 2003;31:1161–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mise M, Yadera S, Matsuda M, et al. Polymorphic expression of CYP1A2 leading to interindividual variability in metabolism of a novel benzodiazepine receptor partial inverse agonist in dogs. Drug Metab Dispos. 2004;32:240–5.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou D, Linnenbach AJ, Liu R, et al. Expression and characterization of dog cytochrome P450 2A13 and 2A25 in baculovirus-infected insect cells. Drug Metab Dispos. 2010;38:1015–8.

    Article  CAS  PubMed  Google Scholar 

  30. Locuson CW, Ethell BT, Voice M, Lee D, Feenstra KL. Evaluation of escherichia coli membrane preparations of canine CYP1A1, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 with coexpressed canine cytochrome P450 reductase. Drug Metab Dispos. 2009;37:457–61.

    Article  CAS  PubMed  Google Scholar 

  31. Rahikainen T, Häkkinen MR, Finel M, Pasanen M, Juvonen RO. A high throughput assay for the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin by recombinant human UDP-glucuronosyltransferases and liver microsomes. Xenobiotica. 2013.

  32. Tenmizu D, Endo Y, Noguchi K, Kamimura H. Identification of the novel canine CYP1A2 1117 C > T SNP causing protein deletion. Xenobiotica. 2004;34:835–46.

    Article  CAS  PubMed  Google Scholar 

  33. Roussel F, Duignan DB, Lawton MP, et al. Expression and characterization of canine cytochrome P450 2D15. Arch Biochem Biophys. 1998;357:27–36.

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Wu Q. Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes. BMC Evol Biol. 2007;7:69.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Soars MG, Fettes M, O'Sullivan AC, et al. Cloning and characterisation of the first drug-metabolising canine UDP-glucuronosyltransferase of the 2B subfamily. Biochem Pharmacol. 2003;65:1251–9.

    Article  CAS  PubMed  Google Scholar 

  36. Soars MG, Smith DJ, Riley RJ, Burchell B. Cloning and characterization of a canine UDP-glucuronosyltransferase. Arch Biochem Biophys. 2001;391:218–24.

    Article  CAS  PubMed  Google Scholar 

  37. MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Röst H, Malmström L, Aebersold R. A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics : MCP. 2012;11:540–9.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mise M, Hashizume T, Matsumoto S, Terauchi Y, Fujii T. Identification of non-functional allelic variant of CYP1A2 in dogs. Pharmacogenetics. 2004;14:769–73.

    Article  CAS  PubMed  Google Scholar 

  40. Eguchi K, Nishibe Y, Baba T, Ohno K. Quantitation of cytochrome P450 enzymes (CYP1A1/2, 2B11, 2C21 and 3A12) in dog liver microsomes by enzyme-linked immunosorbent assay. Xenobiotica. 1996;26:755–63.

    Article  CAS  PubMed  Google Scholar 

  41. Nishibe Y, Wakabayashi M, Harauchi T, Ohno K. Characterization of cytochrome P450 (CYP3A12) induction by rifampicin in dog liver. Xenobiotica. 1998;28:549–57.

    Article  CAS  PubMed  Google Scholar 

  42. Kyokawa Y, Nishibe Y, Wakabayashi M, et al. Induction of intestinal cytochrome P450 (CYP3A) by rifampicin in beagle dogs. Chem Biol Interact. 2001;134:291–305.

    Article  CAS  PubMed  Google Scholar 

  43. Sakamoto K, Kirita S, Baba T, et al. A new cytochrome P450 form belonging to the CYP2D in dog liver microsomes: purification, cDNA cloning, and enzyme characterization. Arch Biochem Biophys. 1995;319:372–82.

    Article  CAS  PubMed  Google Scholar 

  44. Mealey KL, Jabbes M, Spencer E, Akey JM. Differential expression of CYP3A12 and CYP3A26 mRNAs in canine liver and intestine. Xenobiotica. 2008;38:1305–12.

    Article  CAS  PubMed  Google Scholar 

  45. Haller S, Schuler F, Lazic SE, et al. Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos. 2012;40:1603–11.

    Article  CAS  PubMed  Google Scholar 

  46. Uchida T, Komori M, Kitada M, Kamataki T. Isolation of cDNAs coding for three different forms of liver microsomal cytochrome P-450 from polychlorinated biphenyl-treated beagle dogs. Mol Pharmacol. 1990;38:644–51.

    CAS  PubMed  Google Scholar 

  47. Bock KW, Bock KW, Bock-Hennig BS, et al. Tissue-specific regulation of canine intestinal and hepatic phenol and morphine UDP-glucuronosyltransferases by β-naphthoflavone in comparison with humans. Biochem Pharmacol. 2002;63:1683–90.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimuta H, Sato K, Yabuki M, Komuro S. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011.

  49. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38:1147–58.

    Article  CAS  PubMed  Google Scholar 

  50. Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates – an evaluation and case study using GastroPlus™. Eur J Pharm Sci. 2012;47:375–86.

    Article  CAS  PubMed  Google Scholar 

  51. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther. 2006;318:1220–9.

    Article  CAS  PubMed  Google Scholar 

  52. Froy O. Cytochrome P450 and the biological clock in mammals. Curr Drug Metab. 2009;10:104–15.

    Article  CAS  PubMed  Google Scholar 

  53. Smith R, Jones RD, Ballard PG, Griffiths HH. Determination of microsome and hepatocyte scaling factors for in vitro/in vivo extrapolation in the rat and dog. Xenobiotica. 2008;38:1386–98.

    Article  CAS  PubMed  Google Scholar 

  54. Bäärnhielm C, Dahlbäck H, Skånberg I. In vivo pharmacokinetics of felodipine predicted from in vitro studies in rat, dog and man. Acta Pharmacol Toxicol. 1986;59:113–22.

    Article  Google Scholar 

  55. Kamiie J, Ohtsuki S, Iwase R, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25:1469–83.

    Article  CAS  PubMed  Google Scholar 

  56. Ohtsuki S, Schaefer O, Kawakami H, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40:83–92.

    Article  CAS  PubMed  Google Scholar 

  57. Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC. Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using NanoUPLC-MS/MS with selected reaction monitoring. J Proteome Res. 2013;12:4402–13.

    Article  CAS  PubMed  Google Scholar 

  58. Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5’-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42:500–10.

    Article  CAS  PubMed  Google Scholar 

  59. Shuford CM, Sederoff RR, Chiang VL, Muddiman DC. Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS). Mol Cell Proteomics. 2012;11:814–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003;100:6940–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kawakami H, Ohtsuki S, Kamiie J, et al. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci. 2010;100:341–52.

    Article  PubMed  Google Scholar 

  63. Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers C.H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta .2013.

  64. Campbell J, Rezai T, Prakash A, et al. Evaluation of absolute peptide quantitation strategies using selected reaction monitoring. Proteomics. 2011;11:1148–52.

    Article  CAS  PubMed  Google Scholar 

  65. Langenfeld E, Zanger UM, Jung K, Meyer HE, Marcus K. Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics. 2009;9:2313–23.

    Article  CAS  PubMed  Google Scholar 

  66. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34:151–78.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39:373–82.

    Article  CAS  PubMed  Google Scholar 

  68. Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 2009;37:32–40.

    Article  CAS  PubMed  Google Scholar 

  69. Meech R, Miners JO, Lewis BC, Mackenzie PI. The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther. 2012;134:200–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments And Disclosures

This work was funded by Roche Postdoc Fellowship (RPF) program. The authors gratefully acknowledge: Zheng Yang (Bristol-Myers Squibb) for kind offering of labs and organisation of placement for intestinal microsome preparation; Mary Obermeier (Bristol-Myers Squibb) for assistance in the lab during intestinal microsome preparation; Laura Singer, Heather Martin, David Wellington and Claudia Suenderhauf (all Roche) for contributions on dog tissue collection and shipment; Martin Ebeling and Marco Berrera (Roche) for compiling the dog protein database; Peter Jakob (Roche) for sample preparation for MS experiments; Hannele Jaatinen, Pirjo Hänninen and Virpi Koponen (all University of Eastern Finland) for support in liver sample processing and characterization.

Supporting Information

Supplementary data is provided in data supplements available in electronic form: Illustrative figures of CYP and UGT enzyme abundance and activity, SRM assay parameters and study-to-study comparison of CYP quantitation results, and CYP and UGT abundance in individual samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Parrott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 893 kb)

ESM 2

(XLSX 11420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikkinen, A.T., Friedlein, A., Matondo, M. et al. Quantitative ADME Proteomics – CYP and UGT Enzymes in the Beagle Dog Liver and Intestine. Pharm Res 32, 74–90 (2015). https://doi.org/10.1007/s11095-014-1446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1446-8

Keywords

Navigation