Skip to main content
Log in

A Physiologically Based Pharmacokinetic Model for Clobazam and Stiripentol in Adults and Children

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a physiologically based pharmacokinetic model in adults and children for clobazam, its active metabolite norclobazam and stiripentol and to account for significant clinical interaction that has been reported when clobazam and stiripentol are co-administered.

Methods

A PBPK model with ten compartments was developed. An in vitro-in vivo extrapolation technique was used to scale clearance in children for clobazam and norclobazam and clearance parameters for stiripentol were obtained from fitting. Other drug and system parameters were obtained from the literature.

Results

The tissue/blood partition coefficients adequately predict observed volume of distribution for clobazam and stiripentol. In a clinical study in children where clobazam was administered alone and co-administered with stiripentol, the predicted and observed minimum concentration at steady state (mean and 95% confidence interval) during clobazam monotherapy were 0.19 (0.05–0.49 mg/L) and 0.20 (0.17–0.23 mg/L), respectively, and predicted and observed norclobazam concentrations were 0.49 (0.16–1.38 mg/L) and 0.95 (0.91–0.99 mg/L), respectively. From an interaction study with stiripentol the predicted stiripentol concentration was 10.12 (2.51–39.36 mg/L) and the observed concentration was 10.0 (8.3–11.7 mg/L); the predicted clobazam concentration was 0.29 (0.07–1.05 mg/L) and the observed concentration was 0.31 (0.24–0.38 mg/L); and the predicted norclobazam concentration was 2.30 (0.45–5.53 mg/L) and the observed concentration was 4.32 (3.77–4.87 mg/L).

Conclusions

The PBPK model adequately described observed data and the extent of interaction between clobazam/norclobazam and stiripentol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hurst DL. Epidemiology of severe myoclonic epilepsy of infancy. Epilepsia. 1990;31:397–400.

    Article  CAS  PubMed  Google Scholar 

  2. Morse RP. Dravet syndrome: inroads into understanding epileptic encephalopathies. J Pediatr. 2011;158:354–9.

    Article  PubMed  Google Scholar 

  3. Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia. 2011;52 Suppl 2:72–5.

    Article  PubMed  Google Scholar 

  4. Plosker GL. Stiripentol: in severe myoclonic epilepsy of infancy (dravet syndrome). CNS Drugs. 2012;26:993–1001.

    Article  CAS  PubMed  Google Scholar 

  5. Chiron C, Marchand MC, Tran A, Rey E, Athis P, Vincent J, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet. 2000;356:1638–42.

    Article  CAS  PubMed  Google Scholar 

  6. Greenblatt DJ, Divoll M, Abernethy DR, Ochs HR, Shader RI. Clinical pharmacokinetics of the newer benzodiazepines. Clin Pharmacokinet. 1983;8:233–52.

    Article  CAS  PubMed  Google Scholar 

  7. Giraud C, Tran A, Rey E, Vincent J, Treluyer JM, Pons G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004;32:1279–86.

    CAS  PubMed  Google Scholar 

  8. Greenblatt DJ, Divoll M, Puri SK, Ho I, Zinny MA, Shader RI. Clobazam kinetics in the elderly. Br J Clin Pharmacol. 1981;12:631–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chiron C. Stiripentol Neurother. 2007;4:123–5.

    Article  CAS  Google Scholar 

  10. Moreland TA, Astoin J, Lepage F, Tombret F, Levy RH, Baillie TA. The metabolic fate of stiripentol in man. Drug Metab Dispos. 1986;14:654–62.

    CAS  PubMed  Google Scholar 

  11. Chhun S, Peigne S, Rey E, Pons G, Jullien V. Population pharmacokinetic study in healthy volunteers treated with 3 single doses of stiripentol (500, 1,000, 2,000 mg). Fundam Clin Pharmacol. 2009;23:24–5.

    Google Scholar 

  12. Levy RH, Lin HS, Blehaut HM, Tor JA. Pharmacokinetics of stiripentol in normal man: evidence of nonlinearity. J Clin Pharmacol. 1983;23:523–33.

    Article  CAS  PubMed  Google Scholar 

  13. Giraud C, Treluyer JM, Rey E, Chiron C, Vincent J, Pons G, et al. In vitro and in vivo inhibitory effect of stiripentol on clobazam metabolism. Drug Metab Dispos. 2006;34:608–11.

    Article  CAS  PubMed  Google Scholar 

  14. Tran A, Rey E, Pons G, Rousseau M, d’Athis P, Olive G, et al. Influence of stiripentol on cytochrome P450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther. 1997;62:490–504.

    Article  CAS  PubMed  Google Scholar 

  15. Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA. Stiripentol kinetics in epilepsy: nonlinearity and interactions. Clin Pharmacol Ther. 1984;36:661–9.

    Article  CAS  PubMed  Google Scholar 

  16. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32:1–277.

    Article  Google Scholar 

  17. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

    Article  CAS  PubMed  Google Scholar 

  18. DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.

    Article  CAS  Google Scholar 

  19. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.

    Article  CAS  PubMed  Google Scholar 

  20. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95:1238–57.

    Article  CAS  PubMed  Google Scholar 

  21. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94:1259–76.

    Article  CAS  PubMed  Google Scholar 

  22. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11:225–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA. Michaelis-Menten kinetics of stiripentol in normal humans. Epilepsia. 1984;25:486–91.

    Article  CAS  PubMed  Google Scholar 

  24. Rey E, Jullien V, D’Athis P, Vincent J, Pons G. Is pharmacokinetics of stiripentol linear? Clin Pharmacol Ther. 2005;77:P64–4.

  25. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User’s guides. (1989–2009). Ellicott City: Icon Development Solutions; 2009.

    Google Scholar 

  26. Menke G, Pfister P, Sauerwein S, Rietbrock I, Woodcock BG, Rietbrock N. Age-dependence and free fatty acid modulation of binding kinetics at the benzodiazepine binding site of serum albumin in neonates and adults determined using fast reaction methods. Br J Clin Pharmacol. 1987;23:439–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS PharmSci. 2002;4:E4.

    Article  PubMed  Google Scholar 

  28. Salem F, Johnson TN, Barter ZE, Leeder JS, Rostami-Hodjegan A. Age related changes in fractional elimination pathways for drugs: assessing the impact of variable ontogeny on metabolic drug-drug interactions. J Clin Pharmacol. 2013;53:857–65.

    Article  PubMed  Google Scholar 

  29. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999;284:1677–9.

    Article  CAS  PubMed  Google Scholar 

  30. GetData Graph Digitizer, http://getdata-graph-digitizer.com/2013.

  31. MATLAB 7.14.0.739. Natick, Massachusetts: The MathWorks Inc. R 2012a.

  32. Tedeschi G, Riva R, Baruzzi A. Clobazam plasma-concentrations - pharmacokinetic study in healthy-volunteers and data in epileptic patients. Br J Clin Pharmacol. 1981;11:619–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ochs HR, Greenblatt DJ, Luttkenhorst M, Verburg-Ochs B. Single and multiple dose kinetics of clobazam, and clinical effects during multiple dosage. Eur J Clin Pharmacol. 1984;26:499–503.

    Article  CAS  PubMed  Google Scholar 

  34. Greenblatt DJ. Electron-capture GLC determination of clobazam and desmethylclobazam in plasma. J Pharm Sci. 1980;69:1351–2.

    Article  CAS  PubMed  Google Scholar 

  35. Divoll M, Greenblatt DJ, Ciraulo DA, Puri SK, Ho I, Shader RI. Clobazam kinetics: intrasubject variability and effect of food on adsorption. J Clin Pharmacol. 1982;22:69–73.

    Article  CAS  PubMed  Google Scholar 

  36. Bun H, Coassolo P, Gouezo F, Serradimigni A, Cano JP. Time-dependence of clobazam and N-demethylclobazam kinetics in healthy volunteers. Int J Clin Pharmacol Ther Toxicol. 1986;24:287–93.

    CAS  PubMed  Google Scholar 

  37. Greenblatt DJ, Divoll M, Puri SK, Ho I, Zinny MA, Shader RI. Reduced single-dose clearance of clobazam in elderly men predicts increased multiple-dose accumulation. Clin Pharmacokinet. 1983;8:83–94.

    Article  CAS  PubMed  Google Scholar 

  38. Pullar T, Edwards D, Haigh JR, Peaker S, Feely MP. The effect of cimetidine on the single dose pharmacokinetics of oral clobazam and N-desmethylclobazam. Br J Clin Pharmacol. 1987;23:317–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jawad S, Richens A, Oxley J. Single dose pharmacokinetic study of clobazam in normal volunteers and epileptic patients. Br J Clin Pharmacol. 1984;18:873–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vallner JJ, Kotzan JA, Stewart JT, Honigberg IL, Needham TE, Brown WJ. Plasma levels of clobazam after 10-, 20-, and 40-mg tablet doses in healthy subjects. J Clin Pharmacol. 1980;20:444–51.

    Article  CAS  PubMed  Google Scholar 

  41. May TW, Boor R, Mayer T, Jurgens U, Rambeck B, Holert N, et al. Concentrations of stiripentol in children and adults with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2012;34:390–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tran A, Vauzelle-Kervroedan F, Rey E, Pous G, d’Athis P, Chiron C, et al. Effect of stiripentol on carbamazepine plasma concentration and metabolism in epileptic children. Eur J Clin Pharmacol. 1996;50:497–500.

    Article  CAS  PubMed  Google Scholar 

  43. Perez J, Chiron C, Musial C, Rey E, Blehaut H, d’Athis P, et al. Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia. 1999;40:1618–26.

    Article  CAS  PubMed  Google Scholar 

  44. Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15:455–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pullar T, Haigh JR, Peaker S, Feely MP. Pharmacokinetics of N-desmethylclobazam in healthy volunteers and patients with epilepsy. Br J Clin Pharmacol. 1987;24:793–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vallner JJ, Needham TE, Jun HW, Brown WJ, Stewart JT, Kotzan JA, et al. Plasma levels of clobazam after three oral dosage forms in health subjects. J Clin Pharmacol. 1978;18:319–24.

    Article  CAS  PubMed  Google Scholar 

  47. Rupp W, Badian M, Christ O, Hajdu P, Kulkarni RD, Taeuber K, et al. Pharmacokinetics of single and multiple doses of clobazam in humans. Br J Clin Pharmacol. 1979;7 Suppl 1:51S–7S.

    Article  PubMed Central  PubMed  Google Scholar 

  48. L. Inc. Onfi (clobazam) Tablets for oral use: prescribing information 2011.

  49. Volz M, Christ O, Kellner HM, Kuch H, Fehlhaber HW, Gantz D, et al. Kinetics and metabolism of clobazam in animals and man. Br J Clin Pharmacol. 1979;7 Suppl 1:41S–50S.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work performed as part of Child-Rare-Euro-Simulation project. CRESim was funded by the ERA-NET PRIOMEDCHILD Joint Call in 2010. Members of the CRESim Project Group: Leon Aarons; Agathe Bajard; Clément Ballot; Yves Bertrand; Frank Bretz; Daan Caudri; Charlotte Castellan; Sylvie Chabaud; Catherine Cornu; Frank Dufour; Nathalie Eymard; Roland Fisch; Renzo Guerrini; Vincent Jullien; Behrouz Kassaï; Patrice Nony; Kayode Ogungbenro; David Pérol; Gérard Pons; Harm Tiddens; Anna Rosati. Members of the Epi-CRESim Project Group: Corinne Alberti; Catherine Chiron; Catherine Cornu, Polina Kurbatova; Rima Nabbout.

The authors also acknowledge helpful discussions with Aleksandra Galetin, Michael Gertz, Eleanor Howgate, Henry Pertinez, Nikolaos Tsamandouras, Adam Darwich and members of Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Kayode Ogungbenro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogungbenro, K., Aarons, L. & and the CRESim & Epi-CRESim Project Groups. A Physiologically Based Pharmacokinetic Model for Clobazam and Stiripentol in Adults and Children. Pharm Res 32, 144–157 (2015). https://doi.org/10.1007/s11095-014-1451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1451-y

KEY WORDS

Navigation