Skip to main content
Log in

Rodent Rhabdomyosarcoma: Comparison Between Total Choline Concentration at H-MRS and [18F]-fluoromethylcholine Uptake at PET Using Accurate Methods for Collecting Data

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To compare choline concentration/amount at proton magnetic resonance spectroscopy (H-MRS) and [18F]-fluoromethylcholine (FCH) uptake at positron emission tomography (PET) in a tumour animal model.

Procedures

Twenty-two rats bearing grafted syngenic rhabdomyosarcoma in both thighs were examined on a 3T MR system and on a small animal PET system. Total choline concentration was measured on proton MR spectra using a so-called ‘best internal fitting’ volume of interest. Choline uptake was expressed as mean and maximum standardized uptake value (SUV and SUVmax, respectively) and as the percent of injected dose (%ID) after tumour delineation on fused PET-MR images. Data sets were displayed on standard scatter plots.

Results

Thirty-six tumours were available for analysis. The area under the curve of the 3.2 ppm choline peak ranged from 69 to 476 (mean, 192) in arbitrary units. Mean SUV values ranged from 0.05 to 0.49 (mean, 0.19) and the %ID from 0.05 to 2.28 (mean, 0.54). Scatter plots failed to reveal quantitative relationship between choline concentration and uptake. Empirically data-driven cut-off lines applied to choline amount (choline concentration × tumour volume) versus choline uptake suggested a paradoxically negative relationship.

Conclusion

Total choline concentration did not correlate with FCH uptake in a tumour experimental model. A negative feedback of high values of total choline amount on cellular FCH uptake seemed to be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyss MT, Weber B, Honer M et al (2004) 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31:312–316

    Article  CAS  PubMed  Google Scholar 

  2. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN (2007) Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med 37:420–428

    Article  PubMed  Google Scholar 

  3. Katz-Brull R, Degani H (1996) Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 16:1375–1380

    CAS  PubMed  Google Scholar 

  4. Morse DL, Carroll D, Day S et al (2009) Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway. NMR Biomed 22:114–127

    Article  CAS  PubMed  Google Scholar 

  5. Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    Article  CAS  PubMed  Google Scholar 

  6. Glunde K, Jacobs MA, Bhujwalla ZM (2006) Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 6:821–829

    Article  CAS  PubMed  Google Scholar 

  7. Ramírez de Molina A, Rodríguez-González A, Gutiérrez R et al (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296:580–583

    Article  PubMed  Google Scholar 

  8. Glunde K, Raman V, Mori N, Bhujwalla ZM (2005) RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 65:11034–11043

    Article  CAS  PubMed  Google Scholar 

  9. Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107

    Article  CAS  PubMed  Google Scholar 

  10. Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy—a pilot study at 4T. Radiology 233:424–431

    Article  PubMed  Google Scholar 

  11. Lichy MP, Bachert P, Henze M, Lichy CM, Debus J, Schlemmer HP (2004) Monitoring individual response to brain-tumour chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy. Neuroradiology 46:126–129

    Article  CAS  PubMed  Google Scholar 

  12. Tate AR, Underwood J, Acosta DM et al (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434

    Article  CAS  PubMed  Google Scholar 

  13. Groves AM, Win T, Haim SB, Ell PJ (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830

    Article  PubMed  Google Scholar 

  14. Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    Article  PubMed  Google Scholar 

  15. Talbot J, Gutman F, Fartoux L et al (2006) PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging 33:1285–1289

    Article  PubMed  Google Scholar 

  16. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR (2002) Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168:273–280

    Article  PubMed  Google Scholar 

  17. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K (2004) Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 31:1064–1072

    CAS  PubMed  Google Scholar 

  18. DeGrado TR, Coleman RE, Wang S et al (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110–117

    CAS  PubMed  Google Scholar 

  19. Utriainen M, Komu M, Vuorinen V et al (2003) Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol 62:329–338

    Article  CAS  PubMed  Google Scholar 

  20. Kwee SA, Coel MN, Lim J, Ko JP (2004) Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging 14:285–289

    PubMed  Google Scholar 

  21. Testa C, Schiavina R, Lodi R et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 244:797–806

    Article  PubMed  Google Scholar 

  22. Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748

    Article  CAS  PubMed  Google Scholar 

  23. Animal Welfare AVMA policy—Use of Animals in Research, Testing, and Education (2007) AVMA Website Available via: http://www.avma.org/issues/policy/animal_welfare/testing.asp. Accessed 24 Mar 2009

  24. MRUI Versions (2006) Available via: http://sermn02.uab.cat/mrui/mrui_Overview.shtml Accessed 24 Mar 2009

  25. de Beer R, van den Boogaart A, van Ormondt D et al (1992) Application of time-domain fitting in the quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed 5:171–178

    Article  PubMed  Google Scholar 

  26. van den Boogaart A, van Ormondt D, Pijnappel W, de Beer R, Ala-Korpela M (1994) Mathematics in signal processing III. Clarendon Press, Oxford

    Google Scholar 

  27. Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K (2002) [18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent : preparation and application to the on-column preparation of [18F]fluorocholine. Appl Radiat Isot 5:347–352

    Article  Google Scholar 

  28. Iwata R, Pascali C, Bogni A, Miyake Y, Yanai K, Ido T (2001) A simple loop method for the automated preparation of [11C]raclopride from [11C]methyl triflate. Appl Radiat Isot 55:17–22

    Article  CAS  PubMed  Google Scholar 

  29. AVMA (2007) AVMA Guidelines on Euthanasia. Available via: http://www.avma.org/issues/animal_welfare/euthanasia.pdf. Accessed 24 Mar 2009

  30. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439

    Article  CAS  PubMed  Google Scholar 

  31. Iorio E, Mezzanzanica D, Alberti P et al (2005) Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res 65:9369–9376

    Article  CAS  PubMed  Google Scholar 

  32. Villa A, Caporizzo E, Papagni A et al (2005) Choline and phosphatidylcholine fluorescent derivatives localization in carcinoma cells studied by laser scanning confocal fluorescence microscopy. Eur J Cancer 41:1453–1459

    Article  CAS  PubMed  Google Scholar 

  33. Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med 231:490–504

    CAS  Google Scholar 

  34. Eliyahu G, Kreizman T, Degani H (2007) Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer 120:1721–1730

    Article  CAS  PubMed  Google Scholar 

  35. Hara T, Bansal A, DeGrado TR (2006) Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging 5:498–509

    PubMed  Google Scholar 

  36. Milosevic M, Fyles A, Hill R (1999) The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int J Radiat Oncol Biol Phys 43:1111–1123

    Article  CAS  PubMed  Google Scholar 

  37. Jain K (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Fond National de la Recherche Scientifique (FNRS-FWO) of Belgium and by a grant from the Fonds Spéciaux de Recherche (FSR) from the Université Catholique de Louvain of Belgium. Willy Landuyt, PhD, from the Katoliek Universiteit te Leuven is acknowledged for providing us with the tumour model. The authors would also like to thank Léon ter Beek, PhD (MR Physicist, Clinical R&D Department, Philips Healthcare) for his assistance during H-MRS data acquisition and post-processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Rommel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommel, D., Bol, A., Abarca-Quinones, J. et al. Rodent Rhabdomyosarcoma: Comparison Between Total Choline Concentration at H-MRS and [18F]-fluoromethylcholine Uptake at PET Using Accurate Methods for Collecting Data. Mol Imaging Biol 12, 415–423 (2010). https://doi.org/10.1007/s11307-009-0283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0283-3

Key words

Navigation