Skip to main content

Advertisement

Log in

Side populations of glioblastoma cells are less sensitive to HSV-TK/GCV suicide gene therapy system than the non-side population

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Side populations of glioblastoma cells are resistant to chemotherapy basically due to ABCG2-mediated efflux of small-molecule drugs. The herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy system is one of the best-characterized strategies for malignant tumors including glioblastoma. Since this system involves a small-molecule drug ganciclovir, we wonder if glioblastoma side population cells are able to “pump out” ganciclovir and thus resistant to this suicide gene therapy. By 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, we found that side populations are more resistant to this system than non-side populations. By flow cytometry and competition assay, we found that ganciclovir is a substrate for ABCG2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ahn M.; Lee S. J.; Li X.; Jiménez J. A.; Zhang Y. P.; Bae K. H.; Mohammadi Y.; Kao C.; Gardner T. A. Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gene Ther 16: 73–82; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Balzarini J.; Bohman C.; De Clercq E. Differential mechanism of cytostatic effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine, 9-(1,3-dihydroxy-2-propoxymethyl)guanine, and other antiherpetic drugs on tumor cells transfected by the thymidine kinase gene of herpes simplex virus type 1 or type 2. J Biol Chem 268: 6332–6337; 1993.

    CAS  PubMed  Google Scholar 

  • Bleau A. M.; Hambardzumyan D.; Ozawa T.; Fomchenko E. I.; Huse J. T.; Brennan C. W.; Holland E. C. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4: 226–235; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Culver K. W.; Ram Z.; Wallbridge S.; Ishii H.; Oldfield E. H.; Blaese R. M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Fick J.; Barker 2nd F. G.; Dazin P.; Westphale E. M.; Beyer E. C.; Israel M. A. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA 92: 11071–11075; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Hambardzumyan D.; Becher O. J.; Holland E. C. Cancer stem cells and survival pathways. Cell Cycle 7: 1371–1378; 2008.

    CAS  PubMed  Google Scholar 

  • Ilsley D. D.; Lee S. H.; Miller W. H.; Kuchta R. D. Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry 34: 2504–2510; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Kitange G. J.; Carlson B. L.; Schroeder M. A.; Grogan P. T.; Lamont J. D.; Decker P. A.; Wu W.; James C. D.; Sarkaria J. N. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11: 281–291; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Louis D. N.; Ohgaki H.; Wiestler O. D.; Cavenee W. K.; Burger P. C.; Jouvet A.; Scheithauer B. W.; Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97–109; 2007.

    Article  PubMed  Google Scholar 

  • Mesnil M.; Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 60: 3989–3999; 2000.

    CAS  PubMed  Google Scholar 

  • Moolten F. L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46: 5276–5281; 1986.

    CAS  PubMed  Google Scholar 

  • Moriuchi S.; Glorioso J. C.; Maruno M.; Izumoto S.; Wolfe D.; Huang S.; Cohen J. B.; Yoshimine T. Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant IkappaBalpha and HSV thymidine kinase. Cancer Gene Ther 12: 487–496; 2005.

    CAS  PubMed  Google Scholar 

  • Nakamura Y.; Oka M.; Soda H.; Shiozawa K.; Yoshikawa M.; Itoh A.; Ikegami Y.; Tsurutani J.; Nakatomi K.; Kitazaki T.; Doi S.; Yoshida H.; Kohno S. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65: 1541–1546; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Rabindran S. K.; Ross D. D.; Doyle L. A.; Yang W.; Greenberger L. M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60: 47–50; 2000.

    CAS  PubMed  Google Scholar 

  • Rainov N. G.; Fels C.; Droege J. W.; Schäfer C.; Kramm C. M.; Chou T. C. Temozolomide enhances herpes simplex virus thymidine kinase/ganciclovir therapy of malignant glioma. Cancer Gene Ther 8: 662–668; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Rainov N. G.; Kramm C. M.; Banning U.; Riemann D.; Holzhausen H. J.; Heidecke V.; Burger K. J.; Burkert W.; Korholz D. Immune response induced by retrovirus-mediated HSV-tk/GCV pharmacogene therapy in patients with glioblastoma multiforme. Gene Ther 7: 1853–1858; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Scott J. N.; Rewcastle N. B.; Brasher P. M.; Fulton D.; Hagen N. A.; MacKinnon J. A.; Sutherland G.; Cairncross J. G.; Forsyth P. Long-term glioblastoma multiforme survivors: a population-based study. Can J Neurol Sci 25: 197–201; 1998.

    CAS  PubMed  Google Scholar 

  • Singh S. K.; Clarke I. D.; Hide T.; Dirks P. B. Cancer stem cells in nervous system tumors. Oncogene 23: 7267–7273; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Smith P. J.; Furon E.; Wiltshire M.; Campbell L.; Feeney G. P.; Snyder R. D.; Errington R. J. ABCG2-associated resistance to Hoechst 33342 and topotecan in a murine cell model with constitutive expression of side population characteristics. Cytometry A 75: 924–933; 2009.

    PubMed  Google Scholar 

  • Zhang M.; Rosen J. M. Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev 16: 60–64; 2006.

    Article  PubMed  Google Scholar 

  • Zhou S.; Schuetz J. D.; Bunting K. D.; Colapietro A. M.; Sampath J.; Morris J. J.; Lagutina I.; Grosveld G. C.; Osawa M.; Nakauchi H.; Sorrentino B. P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028–1034; 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Hu.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Liu, W. Side populations of glioblastoma cells are less sensitive to HSV-TK/GCV suicide gene therapy system than the non-side population. In Vitro Cell.Dev.Biol.-Animal 46, 497–501 (2010). https://doi.org/10.1007/s11626-010-9274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9274-6

Keywords

Navigation