Skip to main content
Log in

Hyperuricemia and gout

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Gout is not a new disease for clinicians; nevertheless, there are still many secrets awaiting discovery for improving knowledge with respect to uric acid metabolism and monosodium urate crystal-induced inflammation. This review of the literature will focus on new insights on the pathogenesis of idiopathic hyperuricemia, and on secondary hyperuricemia and gout. There are also important advances on the pathophysiology of acute gout, especially as a self-limited process (switch from monocyte to macrophage, peroxisome proliferator activated receptor-gamma, and nitric oxide), but also of chronic gouty arthropathy. Armaments for treating hyperuricemia and gout may be already improved by losartan or fenofibrate and, in the future, by urate oxydase-polyethylene glycol 20 and renal handling regulatory molecules. Finally, control of hyperuricemia may also be considered in the prevention and treatment of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Bardin T, Lioté F, Cornélis F: Rein et goutte. In Actualité Rhumatologique. Edited by Kahn MF, Kuntz D, Meyer O. Paris; Elsevier; 2002:278–292.

    Google Scholar 

  2. Roch-Ramel F, Guisan B, Jaeger P, Diezi J: Transport of urate and other organic anions by anion-exchange in human brush-border membrane vesicles. Cell Physiol Biochem 1996, 6:60–71.

    CAS  Google Scholar 

  3. Roch-Ramel F, Diezi J: Renal transport of organic ions and uric acid. In Diseases of the Kidney. Edited by Schrier RW, Gottschalk CW. Boston: Little Brown; 1997:231–249.

    Google Scholar 

  4. Leal-Pinto E, Cohen BE, Abramson RG: Functional analysis and molecular modeling of a cloned urate transporter/channel. J Membr Biol 1999, 169:13–27.

    Article  PubMed  CAS  Google Scholar 

  5. Lipkowitz MS, Leal-Pinto E, Rappoport JZ, et al.: Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 2001, 107:1103–1115.

    Article  PubMed  CAS  Google Scholar 

  6. Enomoto A, Kimura H, Chairoungdua A, et al.: Molecular identification of a renal-anion exchanger that regulates blood urate levels. Nature 2002, 417:447–452. From a systematic survey of organic anion transporter family, they identified URAT1 encoded by SLC22A12 gene on chromosome 11q13, which is a urate-anion exchanger regulating blood uric acid levels. Patients with idiopathic renal hypouricemia have a defect in SLC22A12 sequence.

    PubMed  CAS  Google Scholar 

  7. Sperling O: Hereditary renal hyperuricemia. In The Metabolism and Molecular Basis of Inherited Disease. Edited by Scriver CD, Beaudet AL, Sly WS, Valle D. New York: McGraw Hill; 2001:5069–5084.

    Google Scholar 

  8. Caspi D, Lubart E, Graff E, et al.: The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients. Arthritis Rheum 2000, 43:103–108.

    Article  PubMed  CAS  Google Scholar 

  9. Harris M, Bryant LR, Dfahaner P, Alloway J: Effect of low dose daily aspirin on serum urate levels and urinary excretion in patients receiving probenecid for gouty arthritis. J Rheumatol 2000, 27:2873–2876.

    PubMed  CAS  Google Scholar 

  10. Meyer WJ 3rd, Gill JR Jr, Bartter FC: Gout as a complication of Bartter’s syndrome: a possible role for alkalosis in the decreased clearance of uric acid. Ann Intern Med 1975, 83:56–59.

    PubMed  Google Scholar 

  11. Morikawi Y, Yamamoto T, Takahashi S, et al.: An atypical case of primary renal tubular hypokalaemic metabolic alkalosis with chronic tophaceous gout. Clin Rheumatol 2001, 20:372–375.

    Article  Google Scholar 

  12. Fishel B, Zhukovsky G, Legum C, et al.: A case of Bartter’s syndrome, gout and Becker’s muscular dystrophy. Clin Exp Rheumatol 2000, 18:426–427.

    PubMed  CAS  Google Scholar 

  13. Terkeltaub R: Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and Allied Conditions. Edited by Koopman WJ. Baltimore: Williams & Wilkins; 1996:2085–2102.

    Google Scholar 

  14. Angelis R, Grassi W: Dynamic videomicroscopy evaluation of synovial fluid in gout. J Rheumatol 2001, 28:1926–1927.

    PubMed  Google Scholar 

  15. Matsukawa A, Yoshimura T, Maeda T, et al.: Analysis of the cytokine network among tumor necrosis factor-alpha, interleukin- 1-beta, interleukin-8, and interleukin-1 receptor antagonist in monosodium urate crystal-induced rabbit arthritis. Lab Invest 1999, 78:559–569.

    Google Scholar 

  16. Terkeltaub R, Baird S, Sears P, et al.: The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum 1998, 41:900–909.

    Article  PubMed  CAS  Google Scholar 

  17. Schiltz C, Lioté F, Prudhommeaux F, et al.: Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum 2002, 46:1643–1650. This in vivo study demonstrates the kinetics of cells infiltrating the pseudosynovial membrane (air-pouch model in rat) under MSU crystal inflammation. Early monocyte and mast cell infiltration precedes neutrophil ingress into the membrane and correlated with cellularity in exudates. Mast cell degranulation, namely histamine, could contribute to the early phase of inflammation.

    Article  PubMed  CAS  Google Scholar 

  18. Getting SJ, Flower RJ, Parente L, et al.: Molecular determinants of monosodium urate crystal-induced murine peritonitis: a role for endogenous mastocytes and a distinct recruitment for endothelial-derived selectins. J Pharmacol Exp Ther 1997, 283:123–130.

    PubMed  CAS  Google Scholar 

  19. Lee DM, Friend DS, Gurish MF, et al.: Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 2002, 297:1626–1627. This in vivo study using mice strains deficient in mast cells was the first to demonstrate the role of mast cells in regulating experimental acute and chronic synovitis.

    Google Scholar 

  20. Lioté F, Prudhommeaux F, Schiltz C, et al.: Inhibition and prevention of monosodium urate monohydrate crystal-induced acute inflammation in vivo by transforming growth factor beta-1. Arthritis Rheum 1996, 39:1192–1198.

    Article  PubMed  Google Scholar 

  21. Yagnik DR, Hillyer P, Marshall D, et al.: Noninflammatory phagocytosis of monosodium urate monohydrate crystals by mouse macrophages: implication for the control of joint inflammation in gout. Arthritis Rheum 2000, 43:1779–1789. This is the first demonstration of a potential role for a switch from monocyte to macrophage in the self-limited outcome of acute urate inflammation. Mature mouse macrophagic cell lines have lost their ability to respond to crystal stimulation, but not to other particles, contrary to undifferentiated monocytic cell lines.

    Article  PubMed  CAS  Google Scholar 

  22. Landis RC, Yagnik DR, Florey O, et al.: Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 2002, 46:3026–3033. Demonstrates the switch from reactive human monocytes to unreactive macrophages to urate crystals after in vitro differentiation, and highlights regulation of innate immunity.

    Article  PubMed  CAS  Google Scholar 

  23. Akahoshi T, Namai R, Murakami Y, et al.: Rapid induction of peroxisome proliferator-activated receptor expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum 2003, 48:231–239. Describes a new potential pathway involved or implicated in the selflimitation of acute urate inflammation.

    Article  PubMed  CAS  Google Scholar 

  24. Liu R, O’Connel M, Johnson K, et al.: Extracellular signal-regulated kinase-1/extracellular signal-regulated kinase-2 mitogen- activated protein kinase signaling and activation of activator protein 1 and nuclear factor kB transcription factors play central roles in interleukin-8 expression stimulated by monosodium urate monohydrate and calcium pyrophosphate crystals in monocytic cells. Arthritis Rheum 2000, 43:1145–1255.

    Article  PubMed  CAS  Google Scholar 

  25. Liu R, Aupperle K, Terkeltaub R: Src family protein kinase signaling mediates monosodium urate crystal-induced IL-8 expression by monocytic THP-1 cells. J Leukocyte Biol 2001, 70:961–968.

    PubMed  CAS  Google Scholar 

  26. Cheung H, Halverson PB, McCarty DJ: Phagocytosis of hydroxyapatite or calcium pyrophosphate dihydrate crystals by rabbit articular chondrocytes stimulates release of collagenase, neutral protease, and prostaglandins E2 and F2 (541628). Proc Soc Exp Biol Med 1983, 173:181–189.

    PubMed  CAS  Google Scholar 

  27. Barabe F, Gilbert C, Liao N, et al.: Crystal-induced neutrophil activation VI: involvement of Fc-gamma RIIIB (CD16) and CD11b in response to inflammatory microcrystals. FASEB J 1998, 12:209–220.

    PubMed  CAS  Google Scholar 

  28. Pouliot M, James MJ, McColl SR, et al.: Monosodium urate crystals induced cyclooxygenase-2 in human monocytes. Blood 1998, 91:1769–1776.

    PubMed  CAS  Google Scholar 

  29. Schumacher HR Jr, Boice JA, Daikh DI, et al.: Randomized double blind trial of etoricoxib and indomethacin in treatment of acute gouty arthritis. BMJ 2002, 324:1488–1492.

    Article  PubMed  CAS  Google Scholar 

  30. Dessein PH, Shipton EA, Stanwix AE, et al.: Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis 2000, 59:539–543.

    Article  PubMed  CAS  Google Scholar 

  31. Perez-Ruiz F, Alonzo-Ruiz A, Calabozo M, et al.: Efficacy of allopurinol and benzbromarone for the control of hyperuricemia: a pathogenic approach to the treatment of primary chronic gout. Ann Rheum Dis 1998, 57:545–549.

    Article  PubMed  CAS  Google Scholar 

  32. Perez-Ruiz F, Calabozo M, Fernandez-Lopez MJ, et al.: Treatment of chronic gout in patients with renal function impairment: an open, randomized, actively controlled study. J Clin Rheumatol 1999, 5:49–55.

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Ruiz F, Calabozo M, Pijoan JI, et al.: Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum 2002, 47:356–360.

    Article  PubMed  CAS  Google Scholar 

  34. Zurcher RM, Bock HA, Thiel G: Excellent uricosuric efficacy of benzbromarone in cyclosporin-A-treated renal transplant patients: a prospective study. Nephrol Dial Transplant 1994, 9:548–551.

    PubMed  CAS  Google Scholar 

  35. Bardin T: Should we take advantage of the uricosuric property of fenofibrate and losartan in clinical practice? Ann Rheum Dis 2003, In press.

  36. Shahinfar S, Simpson RL, Carides AD, et al.: Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia. Kidney Intern 1999, 56:1879–1895.

    Article  CAS  Google Scholar 

  37. Bastow MD, Durrington PN, Ishola M: Hypertriglyceridemia and hyperuricemia: effects of two fibric acid-derivatives (bezafibrate and fenofibrate) in a double-blind, placebocontrol trial. Metabolism 1988, 37:217–220.

    Article  PubMed  CAS  Google Scholar 

  38. Elisaf M, Tsimichodimos V, Bairaktari E, Siamopoulos KC: Effect of micronized fenofibrate and losartan combination on uric acid metabolism in hypertensive patients with hyperuricemia. J Cardiovasc Pharmacol 1999, 34:60–63.

    Article  PubMed  CAS  Google Scholar 

  39. Hepburn AL, Kaye SA, Feher MD: Fenofibrate: a new treatment for hyperuricemia and gout? Ann Rheum Dis 2001, 60:984–985.

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi S, Moriwaki Y, Yamamoto T, et al.: Effects of combination treatment using anti-hyperuricemic agents with fenofibrate or losartan on uric acid metabolism. Ann Rheum Dis 2003, In press.

  41. Ward HJ: Uric acid as an independent risk factor in the treatment of hypertension. Lancet 1998, 352:670–671.

    Article  PubMed  CAS  Google Scholar 

  42. Jossa F, Farinaro E, Panico S, et al.: Serum uric acid and hypertension: the Oliveti heart study. J Hum Hypertens 1994, 8:677–681.

    PubMed  CAS  Google Scholar 

  43. Tuttle KR, Short RA, Johnson RJ: Sex differences in uric acid and risk factors for coronary artery disease. Am J Cardiol 2001, 275:1411–1414.

    Article  Google Scholar 

  44. Fang J, Aldemrman MH: Serum uric acid and cardiovascular mortality: the NHANES I epidemiological follow-up study 1971–1992. JAMA 2000, 283:2404–2410.

    Article  PubMed  CAS  Google Scholar 

  45. Culleton BF, Larson MG, Kannel WB, Levy D: Serum uric acid and risk of cardiovascular disease and mortality: the Framingham heart Study. Ann Int Med 1999, 131:7–13.

    PubMed  CAS  Google Scholar 

  46. Mazzali M, Hugues J, Kim YG, et al.: Elevated uric acid increases blood pressure in the rat by a novel crystal independent mechanism. Hypertension 2001, 38:1101–1106. From a rodent model, this study demonstrates how uricase inhibition leads to hyperuricemia and related hypertension, which are reversible by administering allopurinol or benziodarone. This is the first demonstration of a direct effect of hyperuricemia on the vascular system control independently from urate crystal deposition in the kidney. These results were expanded in another study by Mazzali et al. [47].

    PubMed  CAS  Google Scholar 

  47. Mazzali M, Kanellis J, Han L, et al.: Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressureindependant mechanism. Am J Physiol Renal Physiol 2002, 282:F991-F997.

    PubMed  CAS  Google Scholar 

  48. Bomalaski JS, Holsberg FW, Ensor CM, Clark MA: Uricase formulated with polyethylene glycol (uricase-PEG-20): biochemical rationale and preclinical studies. J Rheumatol 2002, 29:1942–1949.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lioté, F. Hyperuricemia and gout. Curr Rheumatol Rep 5, 227–234 (2003). https://doi.org/10.1007/s11926-003-0072-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-003-0072-y

Keywords

Navigation