Skip to main content
Log in

Cytochrome P450 BM-3 Evolved by Random and Saturation Mutagenesis as an Effective Indole-Hydroxylating Catalyst

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome P450 BM-3 with the mutations A74G, F87V, and L188Q could catalyze indole to produce indigo and indirubin. To further enhance this capability, site-directed and random mutageneses on the monooxygenase domain of P450 BM-3 mutant (A74G/F87V/L188Q; 3X) were performed. The mutant libraries created by error-prone polymerase chain reaction were screened using a colorimetric colony-based method on agar plates followed by a spectroscopic assay involving in absorption of indigo at 670 nm and NADPH at 340 nm in microtiter plate. Three mutants (K434R/3X, E435D/3X, and D168N/A225V/K440N/3X) exhibited higher hydroxylation activity toward indole in comparison to parent enzyme. Moreover, using saturation site-directed mutagenesis at amino acid positions 168, 225, 434, 435, and 440, two P450 BM-3 variants (D168H/3X, E435T/3X) with an up to sixfold increase in catalytic efficiency (k cat/K m) were identified, and the mutant D168H/3X acquired higher regioselectivity resulting in more indigo (dimerized 3-hydroxy-indole) compared to parent mutant (93 vs72%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bayer, A. (1878). Synthese des Indigblaus. Chemische Berichte, 11, 1296–1297.

    Google Scholar 

  2. Heumann, K. (1890). Neue Synthese des Indigos und verwandter Farbstoffe 1. Chemische Berichte, 23, 3043–3045.

    Google Scholar 

  3. Koehler, C. S. W. (1999). Synthetic dyes and the German chemical industry. Today’s Chemist at Work, 8, 85–94.

    Google Scholar 

  4. King, L. J., Parke, D. V., & Williams, R. T. (1966). The metabolism of [2-14C] indole in the rat. Biochemistry Journal, 98, 266–277.

    CAS  Google Scholar 

  5. Russell, G. A., & Kaupp, G. (1969). Oxidation of carbanions. IV. Oxidation of indoxyl to indigo in basic solution. Journal of the American Chemical Society, 91, 3851–3859.

    Article  CAS  Google Scholar 

  6. Murdock, D., Ensley, B. D., Serdar, C., & Thalen, M. (1993). Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology, 11, 381–386.

    Article  CAS  Google Scholar 

  7. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., & Gibson, D. T. (1983). Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 222, 167–169.

    Article  CAS  Google Scholar 

  8. Gillam, E. M. J., Aguinaldo, A. M., Notley, L. M., Kim, D., Mundkowski, R. G., Volkov, A. A., et al. (1999). Formation of indigo by recombinant mammalian cytochrome P450. Biochemical and Biophysical Research Communications, 265, 469–472.

    Article  CAS  Google Scholar 

  9. Gillam, E. M. J., Notley, L. M., Cai, H., De Voss, J. J., & Guegerich, F. P. (2000). Oxidation of indole by cytochrome P450 enzymes. Biochemistry, 39, 13817–13824.

    Article  CAS  Google Scholar 

  10. Nakamura, K., Martin, M. V., & Guengerich, F. P. (2001). Random mutagenesis of human cytochrome P450 2A6 and screening with indole oxidation products. Archives of Biochemistry and Biophysics, 395, 25–31.

    Article  CAS  Google Scholar 

  11. Li, Q. S., Schwaneberg, U., Fischer, P., & Schmid, R. D. (2000). Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chemistry- A European Journal, 6, 1531–1536.

    Article  CAS  Google Scholar 

  12. Narhi, L. O., & Fulco, A. J. (1986). Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. Journal of Biological Chemistry, 261, 7160–7169.

    CAS  Google Scholar 

  13. Narhi, L. O., Wen, L. P., & Fulco, A. J. (1988). Characterization of the protein expressed in Escherichia coli by a recombinant plasmid containing the Bacillus megaterium cytochrome P-450 BM-3 gene. Molecular and Cell Biochemistry, 79, 63–71.

    Article  CAS  Google Scholar 

  14. Appel, D., Lutz-Wahl, S., Fischer, P., Schwaneberg, U., & Schmid, R. D. (2001). A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. Journal of Biotechnology, 88, 167–171.

    Article  CAS  Google Scholar 

  15. Carmichael, A. B., & Wong, L. L. (2001). Protein engineering of Bacillus megaterium CYP102: the oxidation of polycyclic aromatic hydrocarbons. European Journal of Biochemistry, 268, 3117–3125.

    Article  CAS  Google Scholar 

  16. Li, Q. S, Ogawa, J., Schmid, R. D., & Shimizu, S. (2001a). Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons. Applied Environmental Microbiology, 67, 5735–5739.

    Article  CAS  Google Scholar 

  17. Peters, M. W., Meinhold, P., Glieder, A., & Arnold, F. H. (2003). Regio- and enantioselective alkane hydroxylation with engineered cytochromesP450 BM-3. Journal of the American Chemical Society, 125, 13442–13450.

    Article  CAS  Google Scholar 

  18. Sambook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual, 3rd edn. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  19. Vandeyar, M. A., Weiner, M. P., Hutton, C. J., & Batt, C. A. (1988). A simple and rapid method forthe selection of oligodeoxynucleotide-directed mutants. Gene, 65, 129–133.

    Article  CAS  Google Scholar 

  20. Maurer, S., Schulze, H., Schmid, R. D., & Urlacher, V. B. (2003). Immobilisation of P450BM-3 andan NADP+ cofactor recycling system: towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Advanced Synthesis and Catalysis, 345, 802–810.

    Article  CAS  Google Scholar 

  21. Omura, T., & Sato, R. J. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. Journal of Biological Chemistry, 239, 2370–2378.

    CAS  Google Scholar 

  22. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, J. E. F., Jr., Brice, M. D., Rodgers, J. R., et al. (1977). The protein data bank: A computer-based archivalle for macromolecular structures. Journal of Molecular Biology, 112, 535–542.

    Article  CAS  Google Scholar 

  23. Gunsteren, W. F. van., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, R., Mark, A. E., et al. (1996). In biomolecular simulation: The gromos96 manual and user guide. Vdf, Hochschulverlag an der ETH; BIOMOS.

  24. Sevrioukova, I. F., Li, H., Zhang, H., Peterson, J. A., & Poulos, T. L. (1999). Structure of a cytochrome P450-redox partner electron-transfer complex. Proceedings of the National Academy of Sciences, 96, 1863–1868.

    Article  CAS  Google Scholar 

  25. McKee, T., & McKee, J. R. (2001). Biochemistry. McGraw-Hill, pp. 121–122.

Download references

Acknowledgements

This work was supported by the joint project of CSC (China)-DAAD (Germany) (2004c33036) and the National Natural Sciences Foundation of China (30570411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-mei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hm., Mei, Lh., Urlacher, V.B. et al. Cytochrome P450 BM-3 Evolved by Random and Saturation Mutagenesis as an Effective Indole-Hydroxylating Catalyst. Appl Biochem Biotechnol 144, 27–36 (2008). https://doi.org/10.1007/s12010-007-8002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8002-5

Keywords

Navigation