Skip to main content

Advertisement

Log in

Genotyping the risk of anthracycline-induced cardiotoxicity

  • Original Paper
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Anthracyclines belong to the most successful antineoplastic drugs, but they are cardiotoxic, which may result in congestive heart failure (CHF). The CHF risk increases with the cumulative anthracycline dose, but it seems also to be modified by individual factors. A role of the individual genetic background is consistent with the altered sensitivity to anthracyclines observed in many transgenic and knockout mouse strains. First clinical data obtained in humans suggest the existence of predisposing variants in genes involved in the oxidative stress, and in the metabolism and transport of anthracyclines. These data will have to be verified in further clinical trials before any attempts of their application in the individual cardiotoxicity prediction can be undertaken. In the meantime, anthracycline-induced cardiotoxicity can be best reduced by application of liposomal anthracycline formulations or by a co-medication with the cardioprotective iron chelator dexrazoxane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedman, M. A., Bozdech, M. J., Billingham, M. E., & Rider, A. K. (1978). Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. Jama, 240, 1603–1606.

    Article  PubMed  CAS  Google Scholar 

  2. Steinberg, J. S., Cohen, A. J., Wasserman, A. G., Cohen, P., & Ross, A. M. (1987). Acute arrhythmogenicity of doxorubicin administration. Cancer, 60, 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  3. Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L Jr, Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.

    Google Scholar 

  4. van Dalen, E. C., van der Pal, H. J., Kok, W. E., Caron, H. N., & Kremer, L. C. (2006). Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. European Journal of Cancer, 42, 3191–3198.

    Article  PubMed  CAS  Google Scholar 

  5. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97, 2869–2879.

    Article  PubMed  CAS  Google Scholar 

  6. Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.

    Article  PubMed  CAS  Google Scholar 

  7. Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H., & Lipshultz, S. E. (2005). Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. British Journal of Haematology, 131, 561–578.

    Article  PubMed  CAS  Google Scholar 

  8. Otterness, D., Szumlanski, C., Lennard, L., Klemetsdal, B., Aarbakke, J., Park-Hah, J. O., Iven, H., Schmiegelow, K., Branum, E., O’Brien, J., & Weinshilboum, R. (1997). Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clinical Pharmacology and Therapeutics, 62, 60–73.

    Article  PubMed  CAS  Google Scholar 

  9. Yates, C. R., Krynetski, E. Y., Loennechen, T., Fessing, M. Y., Tai, H. L., Pui, C. H., Relling, M. V., & Evans, W. E. (1997). Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Annals of Internal Medicine, 126, 608–614.

    PubMed  CAS  Google Scholar 

  10. Evans, W. E., Hon, Y. Y., Bomgaars, L., Coutre, S., Holdsworth, M., Janco, R., Kalwinsky, D., Keller, F., Khatib, Z., Margolin, J., Murray, J., Quinn, J., Ravindranath, Y., Ritchey, K., Roberts, W., Rogers, Z. R., Schiff, D., Steuber, C., Tucci, F., Kornegay, N., Krynetski, E. Y., & Relling, M. V. (2001). Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. Journal of Clinical Oncology, 19, 2293–2301.

    PubMed  CAS  Google Scholar 

  11. Schutz, E., Gummert, J., Mohr, F., & Oellerich, M. (1993). Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet, 341, 436.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, L., & Weinshilboum, R. (2006). Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene, 25, 1629–1638.

    Article  PubMed  CAS  Google Scholar 

  13. Haga, S. B., Thummel, K. E., & Burke, W. (2006). Adding pharmacogenetics information to drug labels: lessons learned. Pharmacogenet Genomics, 16, 847–854.

    PubMed  CAS  Google Scholar 

  14. Dell’Acqua, G., Polishchuck, R., Fallon, J. T., & Gordon, JW. (1999). Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Human Gene Therapy, 10, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  15. Olson, L. E., Bedja, D., Alvey, S. J., Cardounel, A. J., Gabrielson, K. L., & Reeves, R. H. (2003). Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Research, 63, 6602–6606.

    PubMed  CAS  Google Scholar 

  16. Forrest, G. L., Gonzalez, B., Tseng, W., Li, X., & Mann, J. (2000). Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Research, 60, 5158–5164.

    PubMed  CAS  Google Scholar 

  17. Paulides, M., Kremers, A., Stohr, W., Bielack, S., Jurgens, H., Treuner, J., Beck, J. D., & Langer, T. (2006). German Late Effects Working Group in the Society of Pediatric Oncology, Haematology (GPOH). Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the late effects surveillance system (LESS). Pediatric Blood and Cancer, 46, 489–495.

    Article  PubMed  CAS  Google Scholar 

  18. Henderson, I. C., Allegra, J. C., Woodcock, T., Wolff, S., Bryan, S., Cartwright, K., Dukart, G., & Henry, D. (1989). Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol, 7, 560–571.

    PubMed  CAS  Google Scholar 

  19. Aplenc, R., Blanco, J., Leiisenring, W., Davies, S., Relling, M., Robinson, L., Sklar, C., Stovall, M., & Bathia, S. (2006). Polymorphisms in candidate genes in patients with congestive heart failure (CHF) after childhood cancer: A report from the Childhood Cancer Survivor Study (CCSS). Journal of Clinical Oncology, 2418S, 9004A.

    Google Scholar 

  20. Wojnowski, L., Kulle, B., Schirmer, M., Schluter, G., Schmidt, A., Rosenberger, A., Vonhof, S., Bickeboller, H., Toliat, M. R., Suk, E. K., Tzvetkov, M., Kruger, A., Seifert, S., Kloess, M., Hahn, H., Loeffler, M., Nurnberg, P., Pfreundschuh, M., Trumper, L., Brockmoller, J., & Hasenfuss, G. (2005). NADPH oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112, 3754–3762.

    Article  PubMed  CAS  Google Scholar 

  21. Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., & Shah, A. M. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of the American College of Cardiology, 41, 2164–2171.

    Article  PubMed  CAS  Google Scholar 

  22. Soccio, M., Toniato, E., Evangelista, V., Carluccio, M., & De Caterina, R. (2005). Oxidative stress and cardiovascular risk: the role of vascular NADPH oxidase and its genetic variants. European Journal of Clinical Investigation, 35, 305–314.

    Article  PubMed  CAS  Google Scholar 

  23. Deng, S., Kruger, A., Kleschyov, A. L., Kalinowski, L., Daiber, A., Wojnowski, L. (2007). Gp91phox-containing NADPH oxidase increases superoxide formation by doxorubicin and NADPH. Journal of Free Radical Biology and Medicine, 42, 466–473.

    Google Scholar 

  24. Bartoszek, A., & Wolf, C. R. (1992). Enhancement of doxorubicin toxicity following activation by NADPH cytochrome P450 reductase. Biochemical Pharmacology, 43, 1449–1457.

    Article  PubMed  CAS  Google Scholar 

  25. Vasquez-Vivar, J., Martasek, P., Hogg, N., Masters, B. S., Pritchard, K. A Jr, & Kalyanaraman, B. (1997). Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry, 36, 11293–11297.

    Article  PubMed  CAS  Google Scholar 

  26. Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.

    PubMed  CAS  Google Scholar 

  27. van Dalen, E. C., Caron, H. N., Dickinson, H. O., & Kremer, L. C. (2005). Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews, 1, CD003917.

    Google Scholar 

  28. Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M., & Deeley, R. G. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  29. Cui, Y., Konig, J., Buchholz, J. K., Spring, H., Leier, I., & Keppler, D. (1999). Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Molecular Pharmacology, 55, 929–937.

    PubMed  CAS  Google Scholar 

  30. Flens, M. J., Zaman, G. J., van der Valk P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., van der Groep, P., de Haas, M., Meijer, C. J., & Scheper, R. J. (1997). Tissue distribution of the multidrug resistance protein. The American Journal of Pathology, 148, 1237–1247.

    Google Scholar 

  31. Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., Beijnen, J. H., van der Valk, M., Krimpenfort, P., & Borst, P. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 3, 1275–1279.

    Article  PubMed  CAS  Google Scholar 

  32. Rajagopal, A., & Simon, S. M. (2003). Subcellular localization and activity of multidrug resistance proteins. Molecular Biology of the Cell, 14, 3389–3399.

    Article  PubMed  CAS  Google Scholar 

  33. Hidemura, K., Zhao, Y. L., Ito, K., Nakao, A., Tatsumi, Y., Kanazawa, H., Takagi, K., Ohta, M., & Hasegawa, T. (2003). Shiga-like toxin II impairs hepatobiliary transport of doxorubicin in rats by down-regulation of hepatic P glycoprotein and multidrug resistance-associated protein Mrp2. Antimicrobial Agents and Chemotherapy, 47, 1636–1642.

    Article  PubMed  CAS  Google Scholar 

  34. Jacquet, J. M., Bressolle, F., Galtier, M., Bourrier, M., Donadio, D., Jourdan, J., & Rossi, J. F. (1990). Doxorubicin and doxorubicinol: intra- and inter-individual variations of pharmacokinetic parameters. Cancer Chemotherapy and Pharmacology, 27, 219–225.

    Article  PubMed  CAS  Google Scholar 

  35. Piscitelli, S. C., Rodvold, K. A., Rushing, D. A., & Tewksbury, D. A. (1993). Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clinical Pharmacology and Therapeutics, 53, 555–561.

    Article  PubMed  CAS  Google Scholar 

  36. Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. The Journal of Clinical Investigation, 98, 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  37. Kang, Y. J., Chen, Y., & Epstein, P. N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. The Journal of Biological Chemistry, 271, 12610–12616.

    Article  PubMed  CAS  Google Scholar 

  38. Badary, O. A., Awad, A. S., Abdel-Maksoud, S., & Hamada, F. M. (2004). Cardiac DT-diaphorase contributes to the detoxification system against doxorubicin-induced positive inotropic effects in guinea-pig isolated atria. Clinical and Experimental Pharmacology and Physiology, 31, 856–861.

    Article  PubMed  CAS  Google Scholar 

  39. Gutierrez, P. L. (2000). The role of NADPH oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radical Biology and Medicine, 29, 263–275.

    Article  PubMed  CAS  Google Scholar 

  40. L’Ecuyer, T., Allebban, Z., Thomas, R., & Vander Heide, R. (2004). Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2057–2064.

    Article  PubMed  CAS  Google Scholar 

  41. Harbottle, A., Daly, A. K., Atherton, K., & Campbell, F. C. (2001). Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance. International Journal of Cancer, 92, 777–783.

    Article  CAS  Google Scholar 

  42. Wang, K., Ramji, S., Bhathena, A., Lee, C., & Riddick, D. S. (1999). Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica, 29, 155–170.

    Article  PubMed  CAS  Google Scholar 

  43. Gaudiano, G., Koch, T. H., Lo Bello, M., Nuccetelli, M., Ravagnan, G., Serafino, A., & Sinibaldi-Vallebona, P. (2000). Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Inhibition of glutathione S-transferase p1–1 by glutathione conjugates from anthracyclines. Biochemical Pharmacology, 60, 1915–1923.

    Article  PubMed  CAS  Google Scholar 

  44. Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., Wichmann, H. E., Meitinger, T., Hunter, D., Hu, F. B., Colditz, G., Hinney, A., Hebebrand, J., Koberwitz, K., Zhu, X., Cooper, R., Ardlie, K., Lyon, H., Hirschhorn, J. N., Laird, N. M., Lenburg, M. E., Lange, C., & Christman, M. F. (2006). A common genetic variant is associated with adult and childhood obesity. Science, 312, 279–283.

    Article  PubMed  CAS  Google Scholar 

  45. van Dalen, E. C., Michiels, E. M., Caron, H. N., & Kremer, L. C. (2006). Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews, 4, CD005006.

    Google Scholar 

  46. Moghrabi, A., Levy, D. E., Asselin, B., Barr, R., Clavell, L., Hurwitz, C., Samson, Y., Schorin, M., Dalton, V. K., Lipshultz, S. E., Neuberg, D. S., Gelber, R. D., Cohen, H. J., Sallan, S. E., & Silverman, L. B. (2007). Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood, 109, 896–904.

    Article  PubMed  CAS  Google Scholar 

  47. Marty, M., Espie, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17, 614–622.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Wojnowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Wojnowski, L. Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol 7, 129–134 (2007). https://doi.org/10.1007/s12012-007-0024-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0024-2

Keywords

Navigation