Skip to main content

Advertisement

Log in

Proteomic analysis of cell lines to identify the irinotecan resistance proteins

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Chemotherapeutic drug resistance is a frequent cause of treatment failure in colon cancer patients. Several mechanisms have been implicated in drug resistance. However, they are not sufficient to exhaustively account for this resistance emergence. In this study, two-dimensional gel electrophoresis (2-DE) and the PDQuest software analysis were applied to compare the differential expression of irinotecan-resistance-associated protein in human colon adenocarcinoma LoVo cells and irinotecan-resistant LoVo cells (LoVo/irinotecan). The differential protein dots were excised and analysed by ESI-Q-TOF mass spectrometry (MS). Fifteen proteins were identified, including eight proteins with decreased expression and seven proteins with increased expression. The identified known proteins included those that function in diverse biological processes such as cellular transcription, cell apoptosis, electron transport/redox regulation, cell proliferation/differentiation and retinol metabolism pathways. Identification of such proteins could allow improved understanding of the mechanisms leading to the acquisition of chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

acetonitrile

AKR:

aldo-keto reductase

AR1A1:

aldose reductase

CBB:

Coomassie brilliant blue

CFL1:

Cofilin-1

CRYAB:

alpha-crystallin B chain

2-DE:

two-dimensional gel electrophoresis

DMEM:

Dulbecco’s modified Eagle medium

ELISA:

enzyme-linked immunosorbent assay

5-FU:

5-fluorouracil

HSP27:

heat shock protein 27

IEF:

isoelectric focusing

IPG:

immobilised pH gradient

LoVo cells:

human colon adenocarcinoma

LoVo/irinotecan:

irinotecan-resistant human colon adenocarcinoma

MDR:

multidrug resistance

MS:

mass spectrometry

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

phosphate buffered saline

Pgp:

P-glycoprotein

PVDF:

polyvinylidene difluoride

Q-TOF:

quadrupole time-of-flight

TBST:

Tris-buffered saline Tween-20

TFA:

trifluoroacetic acid

References

  • Arrigo A P, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C and Vicart P 2007 Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets; FEBS Lett. 581 3665–3674

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Pan S, Brentnall T A and Aebersold R 2005 Proteomic profiling of pancreatic cancer for biomarker discovery; Mol. Cell Proteomics 4 523–533

    Article  CAS  PubMed  Google Scholar 

  • Flagiello D, Apiou F, Gibaud A, Poupon M F, Dutrillaux B and Malfoy B 1997 Assignment of the genes for cellular retinoic acid binding protein 1 (CRABP1) and 2 (CRABP2) to human chromosome band 15q24 and 1q21.3, respectively, by in situ hybridization; Cytogenet. Cell Genet. 76 17–18

    Article  CAS  PubMed  Google Scholar 

  • Forrest G L and Gonzalez B 2000 Carbonyl reductase; Chem. Biol. Interact. 129 2140

    Article  Google Scholar 

  • Goldberg R M 2006 Therapy for metastatic colorectal cancer; Oncologist 11 981–987

    Article  CAS  PubMed  Google Scholar 

  • Hütter G and Sinha P 2001 Proteomics for studying cancer cells and the development of chemoresistance; Proteomics 1 1233–1248

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun M J 2009 Cancer statistics, 2009; CA-Cancer J. Clin. 59 225–249

    Article  PubMed  Google Scholar 

  • Jin Y and Penning T M 2007 Aldo-keto reductases and bioactivation/detoxication; Annu. Rev. Pharmacol. Toxicol. 47 263–292

    Article  CAS  PubMed  Google Scholar 

  • Judson L K, William P H and Adrience C S 2004 Molecular analysis of alpha B-crystallin in human malignant glioma cell populations; AACR Meeting #2263

  • Kelly H and Goldberg R M 2005 Systemic therapy for metastatic colorectal cancer: current options, current evidence; J. Clin. Oncol. 23 4553–4560

    Article  CAS  PubMed  Google Scholar 

  • Kuffel M J, Reid J M and Ames M M 1992 Anthracyclines and their C-13 alcohol metabolites: growth inhibition and DNA damage following incubation with human tumor cells in culture; Cancer Chemother. Pharmacol. 30 51–57

    Article  CAS  PubMed  Google Scholar 

  • Lage H 2003 ABC-transporters: implications on drug resistance from microorganisms to human cancers; Int. J. Antimicrob. Agents 22 188–199

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cusack B J, Boucek Jr R J, Mushlin P S, Bledsoe T B, Brenner D E and Olson R D 1991 Effects of daunorubicin and its primary metabolite, daunorubicinol, on cardiac contractility and calcium loading of sarcoplasmic reticulum; FASEB J. 5 A1395

    Google Scholar 

  • Licata S, Saponiero A, Mordente A and Minotti G 2000 Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction; Chem. Res. Toxicol. 13 414–420

    Article  CAS  PubMed  Google Scholar 

  • Ling V 1997 Multidrug resistance: molecular mechanisms and clinical relevance; Cancer Chemother. Pharmacol. Suppl. 40 S 38

    Article  Google Scholar 

  • Mariann P, Michael S, Christoph H, Lutz K and Edmund M 2007 Increased resistance of tumor cells to daunorubicin after transfection of CDNAs coding for anthracycline inactivating enzymes; Cancer Lett. 255 49–56

    Article  Google Scholar 

  • Matsunaga T, Shintani S and Hara A 2006 Multiplicity of mammalian reductases for xenobiotic carbonyl compounds; Drug Metab. Pharmacokinet. 21 118

    Article  Google Scholar 

  • Mordente A, Minotti G, Martorana G E, Silvestrini A, Giardina B and Meucci E 2003 Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications; Biochem. Pharmacol. 66 989–998

    Article  CAS  PubMed  Google Scholar 

  • Ohara H, Miyabe Y, Deyashiki Y, Matsuura K and Hara A 1995 Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver; Biochem. Pharmacol. 50 221–227

    Article  CAS  PubMed  Google Scholar 

  • Olson R D, Mushlin P S, Brenner D E, Fleischer S, Cusack B J, Chang B K and Boucek Jr R J 1988 Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol; Proc. Natl. Acad. Sci. USA 85 3585–3589

    Article  CAS  PubMed  Google Scholar 

  • Perez R P 1998 Cellular and molecular determinants of cisplatin resistance; Eur. J. Cancer 34 1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y, Pourquier P, Fan Y and Strumberg D 1998 Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme; Biochim. Biophys. Acta 1400 83–105

    CAS  PubMed  Google Scholar 

  • Schott B and Robert J 1989 Comparative activity of anthracycline 13-hydroxymetabolites against rat glioblastoma cells in culture; Biochem. Pharmacol. 38 4069–4074

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Hütter G, Kottgen E, Dietel M, Schadendorf D and Lage H 1999 Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-σ(stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas; Electrophoresis 20 2952–2960

    Article  CAS  PubMed  Google Scholar 

  • Slatter J G, Su P, Sams J P, Schaaf L J and Wienkers L C 1997 Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions; Drug Metab. Dispos. 25 1157–1164

    CAS  PubMed  Google Scholar 

  • Tanaka K, Imoto I, Inoue J, Kozaki K, Tsuda H, Shimada Y, Aiko S, Yoshizumi Y, Iwai T, Kawano T and Inazawa J 2007 Frequent methylation-associated silencing of a candidate tumorsuppressor, CRABP1, in esophageal squamous-cell carcinoma; Oncogene 26 6456–6468

    Article  CAS  PubMed  Google Scholar 

  • Tong A, Zhang H, Li Z, Gou L, Wang Z, Wei H, Tang M, Liang S, Chen L, Huang C and Wei Y 2007 Proteomic analysis of liver cancer cells treated with suberonylanilide hydroxamic acid; Cancer Chemother. Pharmacol. 61 791–802

    Article  PubMed  Google Scholar 

  • Vimalachandran D and Costello E 2004 Proteomic technologies and their application to pancreatic cancer; Expert Rev. Proteomics 1 493–501

    Article  CAS  PubMed  Google Scholar 

  • Watanabe G, Kato S, Nakata H, Ishida T, Ohuchi N and Ishioka C 2009 alphaB-crystallin: a novel p53-target gene required for p53-dependent apoptosis; Cancer Sci. 100 2368–2375

    Article  CAS  PubMed  Google Scholar 

  • Yu D H 1998 The role of oncogenes in drug resistance; Cytotechnology 27 283–292

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Liu G, Rea P A and Kruh G D 2000 Transport of amphipathic anions by human multidrug resistance protein 3; Cancer Res. 60 4779–4784

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Yan Liu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, XC., Gong, FM., Wei, M. et al. Proteomic analysis of cell lines to identify the irinotecan resistance proteins. J Biosci 35, 557–564 (2010). https://doi.org/10.1007/s12038-010-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0064-9

Keywords

Navigation