Skip to main content
Log in

Clinical Pharmacokinetics of Drugs in Patients with Heart Failure

An Update (Part 1, Drugs Administered Intravenously)

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Heart failure is one of the leading causes of death in developed countries, and its prevalence is expected to increase further in the coming years. While the pharmacokinetic changes observed in patients with heart failure have been reviewed twice in Clinical Pharmacokinetics, approximately a quarter century has passed since the latest article was published in 1988. Since then, many important classes of agents (e.g. ACE inhibitors, angiotensin receptor antagonists and inotropes) have been introduced for the treatment of heart failure. The aim of the present article is to update the information regarding the pharmacokinetics of these drugs. For this purpose we have made a systematic survey of literature using MEDLINE, EMBASE and Japan Centra Revuo Medicina (in Japanese) and found a total of 111 relevant publications for 58 drugs. Heart failure is a pathophysiological state where the damaged heart, from whatever causes, no longer pumps enough blood for the needs of body tissues at rest or during the normal daily activities. The spectrum of heart failure ranges from acute decompensated heart failure (including circulatory shock) to chronic compensated or decompensated heart failure. Because hypoperfusion of organs may influence drug absorption from the gastrointestinal tract, distribution into tissues and elimination either by the liver or kidneys, it is conceivable that the pharmacokinetics of many drugs may be altered in patients with heart failure. The pharmacokinetic changes of drugs in these patients in the light of a physiologically based pharmacokinetic model are discussed, since this model can interpret altered pharmacokinetics in terms of changes in the binding of drugs in plasma and tissue, blood flow to drug-eliminating organs and intrinsic activity of drug elimination. Pharmacokinetic changes of drugs after intravenous administration are described here in Part 1 and those after oral administration will be discussed in Part 2 in a later issue of the Clinical Pharmacokinetics. Reviewing the retrieved data, it was considered that patients with asymptomatic or compensated chronic heart failure seem to have no or minimal alterations in the pharmacokinetics of parenterally administered drugs as long as there was no concurrent liver and/or kidney dysfunction. In contrast, it was found that the systemic clearance of at least six drugs (i.e. milrinone, carperitide, molsidomine, theophylline, ciclosporin and hydralazine) was reduced after intravenous administration by 50 % or more in patients with acute decompensated heart failure or chronic severe heart failure (New York Heart Association class III or IV) as compared with healthy subjects. Because there is a paucity of information regarding the pharmacokinetics of drugs in patients with severe heart failure, close attention should be paid to monitoring the efficacy of these agents and their associated adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mann DL. Pathophysiology of heart failure. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 487–504.

    Google Scholar 

  2. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    Google Scholar 

  3. Mann DL. Management of heart failure patients with reduced efection fraction. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 543–77.

    Google Scholar 

  4. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.

    Article  PubMed  Google Scholar 

  5. Fonarow GC, Yancy CW, Hernandez AF, et al. Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am Heart J. 2011;161(6):1024–30 e3.

    Google Scholar 

  6. Jessup M, Abraham WT, Casey DE, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):1977–2016.

    Article  PubMed  Google Scholar 

  7. Gheorghiade M, Filippatos G, Michael Felker G. Diagnosis and management of acute heart failure syndromes. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 517–42.

  8. Redfield MM. Heart failure with normal ejection fraction. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 586–600.

    Google Scholar 

  9. Smith SJ, Bos G, Esseveld MR, et al. Acute-phase proteins from the liver and enzymes from myocardial infarction; a quantitative relationship. Clin Chim Acta. 1977;81(1):75–85.

    Article  PubMed  CAS  Google Scholar 

  10. Benowitz NL, Meister W. Pharmacokinetics in patients with cardiac failure. Clin Pharmacokinet. 1976;1(6):389–405.

    Article  PubMed  CAS  Google Scholar 

  11. Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure: an updated review. Clin Pharmacokinet. 1988;15(2):94–113.

    Article  PubMed  CAS  Google Scholar 

  12. Nattel S, Gagne G, Pineau M. The pharmacokinetics of lignocaine and beta-adrenoceptor antagonists in patients with acute myocardial infarction. Clin Pharmacokinet. 1987;13(5):293–316.

    Article  PubMed  CAS  Google Scholar 

  13. Chu JS, Kishion S, Nomura A, et al. Serum alpha 1-acid glycoprotein, sialic acid, and protein binding of disopyramide in normal subjects and cardiac patients. Zhongguo Yao Li Xue Bao. 1997;18(5):408–10.

    PubMed  CAS  Google Scholar 

  14. Roden DM. Pharmacokinetics of amiodarone: implications for drug therapy. Am J Cardiol. 1993;72(16):45F–50F.

    Article  PubMed  CAS  Google Scholar 

  15. Veronese ME, McLean S, Hendriks R. Plasma protein binding of amiodarone in a patient population: measurement by erythrocyte partitioning and a novel glass-binding method. Br J Clin Pharmacol. 1988;26(6):721–31.

    Article  PubMed  CAS  Google Scholar 

  16. Nolan PE, Jr. Pharmacokinetics and pharmacodynamics of intravenous agents for ventricular arrhythmias. Pharmacotherapy. 1997;17 (2 Pt 2):65S–75S; discussion 89S–91S.

    Google Scholar 

  17. Vadiei K, O’Rangers EA, Klamerus KJ, et al. Pharmacokinetics of intravenous amiodarone in patients with impaired left ventricular function. J Clin Pharmacol. 1996;36(8):720–7.

    Article  PubMed  CAS  Google Scholar 

  18. Brazzell RK, Khoo KC, Szuna AJ, et al. Pharmacokinetics and pharmacodynamics of intravenous cibenzoline in normal volunteers. J Clin Pharmacol. 1985;25(6):418–23.

    Article  PubMed  CAS  Google Scholar 

  19. Micromedex® 2.0. Thomson Reuters. http://www.thomsonhc.com/micromedex2/librarian/. Accessed 6 Jun 2012.

  20. Massarella JW, Silvestri T, DeGrazia F, et al. Effect of congestive heart failure on the pharmacokinetics of cibenzoline. J Clin Pharmacol. 1987;27(3):187–92.

    Article  PubMed  CAS  Google Scholar 

  21. Murray KT. Ibutilide. Circulation. 1998;97(5):493–7.

    Article  PubMed  CAS  Google Scholar 

  22. Cropp JS, Antal EG, Talbert RL. Ibutilide: a new class III antiarrhythmic agent. Pharmacotherapy. 1997;17(1):1–9.

    PubMed  CAS  Google Scholar 

  23. CORVERT® (ibutilide fumarate) injection [package insert]. Kalamazoo: Pharmacia & Upjohn Company; 2002.

  24. Tisdale JE, Overholser BR, Sowinski KM, et al. Pharmacokinetics of ibutilide in patients with heart failure due to left ventricular systolic dysfunction. Pharmacotherapy. 2008;28(12):1461–70.

    Article  PubMed  CAS  Google Scholar 

  25. PERDIPINE® (nicardipine hydrochloride) Injection [package insert]. Tokyo: Astellas Pharma, Inc.; 2011.

  26. Graham DJ, Dow RJ, Hall DJ, et al. The metabolism and pharmacokinetics of nicardipine hydrochloride in man. Br J Clin Pharmacol. 1985;20(Suppl 1):23S–8S.

    Article  PubMed  CAS  Google Scholar 

  27. Hirasawa K, Tateda K, Kato J, et al. Clinicopharmacological study of nicardipine hydrochloride: pharmacokinetics and hemodynamics after intravenous infusion in patients with acute heart failure. Jpn Pharmacol Ther. 1995;23(4):901–11.

    Google Scholar 

  28. Smith NA, Kates RE, Lebsack C, et al. Clinical pharmacology of intravenous enoximone: pharmacodynamics and pharmacokinetics in patients with heart failure. Am Heart J. 1991;122(3 Pt 1):755–63.

    Article  PubMed  CAS  Google Scholar 

  29. Sandell EP, Hayha M, Antila S, et al. Pharmacokinetics of levosimendan in healthy volunteers and patients with congestive heart failure. J Cardiovasc Pharmacol. 1995;26(Suppl 1):S57–62.

    PubMed  CAS  Google Scholar 

  30. Jonsson EN, Antila S, McFadyen L, et al. Population pharmacokinetics of levosimendan in patients with congestive heart failure. Br J Clin Pharmacol. 2003;55(6):544–51.

    Article  PubMed  CAS  Google Scholar 

  31. Poder P, Eha J, Sundberg S, et al. Pharmacokinetic-pharmacodynamic interrelationships of intravenous and oral levosimendan in patients with severe congestive heart failure. Int J Clin Pharmacol Ther. 2003;41(8):365–73.

    PubMed  CAS  Google Scholar 

  32. Antila S, Kivikko M, Lehtonen L, et al. Pharmacokinetics of levosimendan and its circulating metabolites in patients with heart failure after an extended continuous infusion of levosimendan. Br J Clin Pharmacol. 2004;57(4):412–5.

    Article  PubMed  CAS  Google Scholar 

  33. Edelson J, Stroshane R, Benziger DP, et al. Pharmacokinetics of the bipyridines amrinone and milrinone. Circulation 1986;73(3 Pt 2):III145–52.

    Google Scholar 

  34. Benotti JR, Lesko LJ, McCue JE, et al. Pharmacokinetics and pharmacodynamics of milrinone in chronic congestive heart failure. Am J Cardiol. 1985;56(10):685–9.

    Article  PubMed  CAS  Google Scholar 

  35. Taniguchi T, Shibata K, Saito S, et al. Pharmacokinetics of milrinone in patients with congestive heart failure during continuous venovenous hemofiltration. Intensive Care Med. 2000;26(8):1089–93.

    Article  PubMed  CAS  Google Scholar 

  36. Kieback AG, Iven H, Stolzenburg K, et al. Pharmacokinetics and hemodynamic effects of the phosphodiesterase III inhibitor saterinone in patients with chronic heart failure. Int J Cardiol. 2003;91(2–3):201–8.

    Article  PubMed  CAS  Google Scholar 

  37. Tammara B, Trang JM, Kitani M, et al. The pharmacokinetics of toborinone in subjects with congestive heart failure and concomitant renal impairment and/or concomitant hepatic impairment. J Clin Pharmacol. 2002;42(12):1318–25.

    Article  PubMed  CAS  Google Scholar 

  38. Lehtonen LA, Antila S, Pentikainen PJ. Pharmacokinetics and pharmacodynamics of intravenous inotropic agents. Clin Pharmacokinet. 2004;43(3):187–203.

    Article  PubMed  CAS  Google Scholar 

  39. Antila S, Sundberg S, Lehtonen LA. Clinical pharmacology of levosimendan. Clin Pharmacokinet. 2007;46(7):535–52.

    Article  PubMed  CAS  Google Scholar 

  40. Lilleberg J, Antila S, Karlsson M, et al. Pharmacokinetics and pharmacodynamics of simendan, a novel calcium sensitizer, in healthy volunteers. Clin Pharmacol Ther. 1994;56(5):554–63.

    Article  PubMed  CAS  Google Scholar 

  41. Puttonen J, Kantele S, Ruck A, et al. Pharmacokinetics of intravenous levosimendan and its metabolites in subjects with hepatic impairment. J Clin Pharmacol. 2008;48(4):445–54.

    Article  PubMed  CAS  Google Scholar 

  42. Puttonen J, Kantele S, Kivikko M, et al. Effect of severe renal failure and haemodialysis on the pharmacokinetics of levosimendan and its metabolites. Clin Pharmacokinet. 2007;46(3):235–46.

    Article  PubMed  CAS  Google Scholar 

  43. Kivikko M, Antila S, Eha J, et al. Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharmacol Ther. 2002;40(10):465–71.

    PubMed  CAS  Google Scholar 

  44. Ohnishi A, Toyoki T, Ohno T, et al. Pharmacokinetics and pharmacodynamics of intravenous OPC-18790 in humans: a novel nonglycosidic inotropic agent. J Clin Pharmacol. 1994;34(2):176–83.

    Article  PubMed  CAS  Google Scholar 

  45. Wargo KA, Banta WM. A comprehensive review of the loop diuretics: should furosemide be first line? Ann Pharmacother. 2009;43(11):1836–47.

    Article  PubMed  CAS  Google Scholar 

  46. Vargo DL, Kramer WG, Black PK, et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin Pharmacol Ther. 1995;57(6):601–9.

    Article  PubMed  CAS  Google Scholar 

  47. HANP® (carperitide) for injection [interview form]. Tokyo: Daiichi-Sankyo, Inc.; 2010.

  48. Obata K, Yasue H, Yoshimura M, et al. Clinical effects and pharmacokinetics of alpha-human atrial natriuretic peptide (SUN 4936; carperitide) in patients with acute heart failure. Jpn Pharmacol Ther. 1993;21(4):1103–14.

    Google Scholar 

  49. Kirsten R, Nelson K, Kirsten D, et al. Clinical pharmacokinetics of vasodilators: part II. Clin Pharmacokinet. 1998;35(1):9–36.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenkranz B, Winkelmann BR, Parnham MJ. Clinical pharmacokinetics of molsidomine. Clin Pharmacokinet. 1996;30(5):372–84.

    Article  PubMed  CAS  Google Scholar 

  51. Huber T, Grosse-Heitmeyer W, Rietbrock S, et al. Pharmacokinetics and pharmacodynamics of molsidomine in patients with liver dysfunction due to congestive heart failure. Int J Clin Pharmacol Ther Toxicol. 1992;30(11):491–2.

    PubMed  CAS  Google Scholar 

  52. Jeong CS, Hwang SC, Jones DW, et al. Theophylline disposition in Korean patients with congestive heart failure. Ann Pharmacother. 1994;28(3):396–401.

    PubMed  CAS  Google Scholar 

  53. Leier CV. Regional blood flow in human congestive heart failure. Am Heart J. 1992;124(3):726–38.

    Article  PubMed  CAS  Google Scholar 

  54. Burckart GJ, Fricker FJ, Venkataramanan R, et al. Cyclosporine kinetics in pediatric patients with congestive heart failure. Transpl Proc. 1987;19(1 Pt 2):1528–9.

    CAS  Google Scholar 

  55. Crawford MH, Ludden TM, Kennedy GT. Determinants of systemic availability of oral hydralazine in heart failure. Clin Pharmacol Ther. 1985;38(5):538–43.

    Article  PubMed  CAS  Google Scholar 

  56. Kuntz HD, Straub H, May B. Theophylline elimination in congestive heart failure. Klin Wochenschr. 1983;61(21):1105–6.

    Article  PubMed  CAS  Google Scholar 

  57. Spahn H, Knauf H, Mutschler E. Pharmacokinetics of torasemide and its metabolites in healthy controls and in chronic renal failure. Eur J Clin Pharmacol. 1990;39(4):345–8.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz S, Brater DC, Pound D, et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide in patients with cirrhosis. Clin Pharmacol Ther. 1993;54(1):90–7.

    Article  PubMed  CAS  Google Scholar 

  59. Frey R, Muck W, Unger S, et al. Pharmacokinetics, pharmacodynamics, tolerability, and safety of the soluble guanylate cyclase activator cinaciguat (BAY 58–2667) in healthy male volunteers. J Clin Pharmacol. 2008;48(12):1400–10.

    Article  PubMed  CAS  Google Scholar 

  60. Frey R, Scheerans C, Blunck M, et al. Pharmacokinetics of the soluble guanylate cyclase activator cinaciguat in individuals with hepatic impairment. J Clin Pharmacol. 2012;52(11):1714–24.

    Google Scholar 

  61. Fillastre JP, Leroy A, Humbert G, et al. Pharmacokinetics of habekacin in patients with renal insufficiency. Antimicrob Agents Chemother. 1987;31(4):575–7.

    Article  PubMed  CAS  Google Scholar 

  62. HABEKACIN® (arbekacin sulfate) injection [package insert]. Tokyo: Meiji Seika Pharma Co., Ltd.; 2011.

  63. Brunton L, Chabner B, Knollman B. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill Professional; 2010.

    Google Scholar 

  64. Burnier M, Fricker AF, Hayoz D, et al. Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects. Eur J Clin Pharmacol. 1999;55(9):633–7.

    Article  PubMed  CAS  Google Scholar 

  65. Wolf DL, Hearron AE, Metzler CM, et al. The pharmacokinetics and haemodynamic effects of continuous nicorandil infusion in healthy volunteers. Eur J Clin Pharmacol. 1993;45(5):437–43.

    Article  PubMed  CAS  Google Scholar 

  66. Brunton L, Lazo J, Parker K. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill Professional; 2005.

    Google Scholar 

  67. Goodman LS, Limbird LE, Milinoff PB, et al. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill Professional; 1996.

    Google Scholar 

  68. Haustein KO, Alken RG, Lach HJ, et al. On the pharmacokinetics of pengitoxin and its cardioactive derivative 16-acetyl-gitoxin. Eur J Clin Pharmacol. 1983;25(3):369–73.

    Article  PubMed  CAS  Google Scholar 

  69. Bergstrand R, Vedin A, Wilhelmsson C, et al. Intravenous and oral administration of molsidomine, a pharmacodynamic and pharmacokinetic study. Eur J Clin Pharmacol. 1984;27(2):203–8.

    Article  PubMed  CAS  Google Scholar 

  70. Hardman JG, Limbird LE, Gilman AG. Goodman and Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill Professional; 2001.

    Google Scholar 

  71. Li Y, Tian L, Huang Y, et al. Pharmacokinetic and pharmacodynamic properties of a single intravenous dose of ibutilide fumarate: a phase I, randomized, open-label, increasing-dose study in healthy Chinese men. Clin Ther. 2007;29(9):1957–66.

    Article  PubMed  CAS  Google Scholar 

  72. Malhotra BK, Iyer RA, Soucek KM, et al. Oral bioavailability and disposition of [14C]omapatrilat in healthy subjects. J Clin Pharmacol. 2001;41(8):833–41.

    Article  PubMed  CAS  Google Scholar 

  73. Kostis JB, Garland WT, Delaney C, et al. Fosinopril: pharmacokinetics and pharmacodynamics in congestive heart failure. Clin Pharmacol Ther. 1995;58(6):660–5.

    Article  PubMed  CAS  Google Scholar 

  74. Beermann B, Till AE, Gomez HJ, et al. Pharmacokinetics of lisinopril (IV/PO) in healthy volunteers. Biopharm Drug Dispos. 1989;10(4):397–409.

    Article  PubMed  CAS  Google Scholar 

  75. Till AE, Dickstein K, Aarsland T, et al. The pharmacokinetics of lisinopril in hospitalized patients with congestive heart failure. Br J Clin Pharmacol. 1989;27(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  76. Kostis JB, Klapholz M, Delaney C, et al. Pharmacodynamics and pharmacokinetics of omapatrilat in heart failure. J Clin Pharmacol. 2001;41(12):1280–90.

    Article  PubMed  CAS  Google Scholar 

  77. Kostis JB, Vachharajani NN, Hadjilambris OW, et al. The pharmacokinetics and pharmacodynamics of irbesartan in heart failure. J Clin Pharmacol. 2001;41(9):935–42.

    Article  PubMed  CAS  Google Scholar 

  78. Lo MW, Goldberg MR, McCrea JB, et al. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58(6):641–9.

    Article  PubMed  CAS  Google Scholar 

  79. Lo MW, Toh J, Emmert SE, et al. Pharmacokinetics of intravenous and oral losartan in patients with heart failure. J Clin Pharmacol. 1998;38(6):525–32.

    Article  PubMed  CAS  Google Scholar 

  80. Bonde J, Angelo HR, Bodtker S, et al. Kinetics of disopyramide after intravenous infusion to patients with myocardial infarction and heart failure. Acta Pharmacol Toxicol (Copenh). 1985;56(4):278–82.

    Article  CAS  Google Scholar 

  81. Lima JJ, Haughey DB, Leier CV. Disopyramide pharmacokinetics and bioavailability following the simultaneous administration of disopyramide and 14C-disopyramide. J Pharmacokinet Biopharm. 1984;12(3):289–313.

    Article  PubMed  CAS  Google Scholar 

  82. Kessler KM, Kayden DS, Estes DM, et al. Procainamide pharmacokinetics in patients with acute myocardial infarction or congestive heart failure. J Am Coll Cardiol. 1986;7(5):1131–9.

    Article  PubMed  CAS  Google Scholar 

  83. Tisdale JE, Rudis MI, Padhi ID, et al. Disposition of procainamide in patients with chronic congestive heart failure receiving medical therapy. J Clin Pharmacol. 1996;36(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  84. Kessler KM, Lowenthal DT, Warner H, et al. Quinidine elimination in patients with congestive heart failure or poor renal function. N Engl J Med. 1974;290(13):706–9.

    Article  PubMed  CAS  Google Scholar 

  85. Prescott LF, Adjepon-Yamoah KK, Talbot RG. Impaired lignocaine metabolism in patients with myocardial infarction and cardiac failure. Br Med J. 1976;1(6015):939–41.

    Article  PubMed  CAS  Google Scholar 

  86. Thomson PD, Melmon KL, Richardson JA, et al. Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann Intern Med. 1973;78(4):499–508.

    Article  PubMed  CAS  Google Scholar 

  87. Sawyer DR, Ludden TM, Crawford MH. Continuous infusion of lidocaine in patients with cardiac arrhythmias. Unpredictability of plasma concentrations. Arch Intern Med. 1981;141(1):43–5.

    Article  PubMed  CAS  Google Scholar 

  88. Graffner C, Conradson TB, Hofvendahl S, et al. Tocainide kinetics after intravenous and oral administration in healthy subjects and in patients with acute myocardial infarction. Clin Pharmacol Ther. 1980;27(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  89. MacMahon B, Bakshi M, Branagan P, et al. Pharmacokinetics and haemodynamic effects of tocainide in patients with acute myocardial infarction complicated by left ventricular failure. Br J Clin Pharmacol. 1985;19(4):429–34.

    Article  PubMed  CAS  Google Scholar 

  90. Edgar B, Collste P, Haglund K, et al. Pharmacokinetics and haemodynamic effects of felodipine as monotherapy in hypertensive patients. Clin Invest Med. 1987;10(5):388–94.

    PubMed  CAS  Google Scholar 

  91. Dunselman PH, Edgar B, Scaf AH, et al. Pharmacokinetics of felodipine after intravenous and chronic oral administration in patients with congestive heart failure. Br J Clin Pharmacol. 1989;28(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  92. Shiina A, Hosoda S, Higuchi S, et al. Consecutive intravenous continuous infusion of nicardipine hydrochloride to healthy persons: studies on hemodynamics and pharmacokinetics. Kiso to Rinsho. 1986;20:1114–24.

    Google Scholar 

  93. Gupta SK, Granneman GR, Boger RS, et al. Simultaneous modeling of the pharmacokinetic and pharmacodynamic properties of enalkiren (Abbott-64662, a new renin inhibitor). I: single dose study. Drug Metab Dispos. 1992;20(6):821–5.

    PubMed  CAS  Google Scholar 

  94. Gupta SK, Granneman GR, Packer M, et al. Simultaneous modeling of the pharmacokinetic and pharmacodynamic properties of enalkiren (Abbott-64662, a renin inhibitor). II: a dose-ranging study in patients with congestive heart failure. J Cardiovasc Pharmacol. 1993;21(5):834–40.

    Article  PubMed  CAS  Google Scholar 

  95. Cook JA, Smith DE, Cornish LA, et al. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with congestive heart failure. Clin Pharmacol Ther. 1988;44(5):487–500.

    Article  PubMed  CAS  Google Scholar 

  96. Andreasen F, Mikkelsen E. Distribution, elimination and effect of furosemide in normal subjects and in patients with heart failure. Eur J Clin Pharmacol. 1977;12(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  97. Brater DC, Seiwell R, Anderson S, et al. Absorption and disposition of furosemide in congestive heart failure. Kidney Int. 1982;22(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  98. Andreasen F, Hansen U, Husted SE, et al. The pharmacokinetics of frusemide are influenced by age. Br J Clin Pharmacol. 1983;16(4):391–7.

    Article  PubMed  CAS  Google Scholar 

  99. Noormohamed FH, McNabb WR, Dixey JJ, et al. Renal responses and pharmacokinetics of piretanide in humans: effect of route of administration, state of hydration and probenecid pretreatment. J Pharmacol Exp Ther. 1990;254(3):992–9.

    PubMed  CAS  Google Scholar 

  100. Marone C, Rivera B, Zwahlen H, et al. Efficacy and pharmacokinetics of piretanide in patients with congestive heart failure. Eur J Clin Invest. 1989;19(4):378–83.

    Article  PubMed  CAS  Google Scholar 

  101. Barr WH, Smith HL, Karnes HT, et al. Torasemide dose-proportionality of pharmacokinetics and pharmacodynamics. Prog Pharmacol Clin Pharmacol. 1990;8:29–37.

    CAS  Google Scholar 

  102. Kieback AG, Baumann G. Saterinone, a phosphodiesterase (PDE) III inhibitor and α1-adrenergic antagonist. Cardiovasc Drug Rev. 1999;17:374–83.

    Article  CAS  Google Scholar 

  103. Mueck W, Frey R. Population pharmacokinetics and pharmacodynamics of cinaciguat, a soluble guanylate cyclase activator, in patients with acute decompensated heart failure. Clin Pharmacokinet. 2010;49(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  104. Ludden TM, Shepherd AM, McNay JL, et al. Hydralazine kinetics in hypertensive patients after intravenous administration. Clin Pharmacol Ther. 1980;28(6):736–42.

    Article  PubMed  CAS  Google Scholar 

  105. Iida S, Kinoshita H, Holford NH. Population pharmacokinetic and pharmacodynamic modelling of the effects of nicorandil in the treatment of acute heart failure. Br J Clin Pharmacol. 2008;66(3):352–65.

    Article  PubMed  CAS  Google Scholar 

  106. Fung HL. Pharmacokinetics and pharmacodynamics of organic nitrates. Am J Cardiol. 1987;60(15):4H–9H.

    Article  PubMed  CAS  Google Scholar 

  107. Armstrong PW, Armstrong JA, Marks GS. Pharmacokinetic-hemodynamic studies of intravenous nitroglycerin in congestive cardiac failure. Circulation. 1980;62(1):160–6.

    Article  PubMed  CAS  Google Scholar 

  108. Mao ZL, Stalker D, Keirns J. Pharmacokinetics of conivaptan hydrochloride, a vasopressin V(1A)/V(2)-receptor antagonist, in patients with euvolemic or hypervolemic hyponatremia and with or without congestive heart failure from a prospective, 4-day open-label study. Clin Ther. 2009;31(7):1542–50.

    Article  PubMed  CAS  Google Scholar 

  109. Ochs HR, Schuppan U, Greenblatt DJ, et al. Reduced distribution and clearance of acetaminophen in patients with congestive heart failure. J Cardiovasc Pharmacol. 1983;5(4):697–9.

    Article  PubMed  CAS  Google Scholar 

  110. Jacqz-Aigrain E, Montes C, Brun P, et al. Cyclosporine pharmacokinetics in nephrotic and kidney-transplanted children. Eur J Clin Pharmacol. 1994;47(1):61–5.

    Article  PubMed  CAS  Google Scholar 

  111. Kates RE, Leier CV. Dobutamine pharmacokinetics in severe heart failure. Clin Pharmacol Ther. 1978;24(5):537–41.

    PubMed  CAS  Google Scholar 

  112. Korth-Bradley JM, Rubin AS, Hanna RK, et al. The pharmacokinetics of etanercept in healthy volunteers. Ann Pharmacother. 2000;34(2):161–4.

    Article  PubMed  CAS  Google Scholar 

  113. Soran O, Feldman AM, Schneider VM, et al. The pharmacokinetics of etanercept in patients with heart failure. Br J Clin Pharmacol. 2001;51(2):191–2.

    PubMed  CAS  Google Scholar 

  114. Leuenberger U, Kenney G, Davis D, et al. Comparison of norepinephrine and isoproterenol clearance in congestive heart failure. Am J Physiol. 1992;263(1 Pt 2):H56–60.

    PubMed  CAS  Google Scholar 

  115. Patel IH, Soni PP, Fukuda EK, et al. The pharmacokinetics of midazolam in patients with congestive heart failure. Br J Clin Pharmacol. 1990;29(5):565–9.

    Article  PubMed  CAS  Google Scholar 

  116. Graffner C, Hoffmann KJ, Johnsson G, et al. Pharmacokinetic studies in man of the selective beta 1-adrenoceptor agonist, prenalterol. Eur J Clin Pharmacol. 1981;20(2):91–7.

    Article  PubMed  CAS  Google Scholar 

  117. Sainsbury EJ, Fitzpatrick D, Ikram H. Pharmacokinetic and plasma-concentration-effect relationships of prenalterol in cardiac failure. Eur J Clin Pharmacol. 1985;28(4):397–403.

    Article  PubMed  CAS  Google Scholar 

  118. Slaughter RL, Lanc RA. Theophylline clearance in obese patients in relation to smoking and congestive heart failure. Drug Intell Clin Pharm. 1983;17(4):274–6.

    PubMed  CAS  Google Scholar 

  119. Gardner MJ, Tornatore KM, Jusko WJ, et al. Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol. 1983;16(3):271–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, R., Stachnik, J.M. & Echizen, H. Clinical Pharmacokinetics of Drugs in Patients with Heart Failure. Clin Pharmacokinet 52, 169–185 (2013). https://doi.org/10.1007/s40262-012-0029-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0029-2

Keywords

Navigation