Skip to main content
Log in

Protecting the Fetus Against HIV Infection: A Systematic Review of Placental Transfer of Antiretrovirals

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Maternal-to-fetal transfer of antiretroviral drugs contributes to prevention of vertical transmission of HIV.

Objective

This systematic review discusses published studies containing data pertaining to the pharmacokinetics of placental transfer of antiretrovirals in humans, including paired cord and maternal plasma samples collected at the time of delivery as well as ex vivo placental perfusion models.

Methods

Articles pertaining to placental transfer of antiretrovirals were identified from PubMed, from references of included articles, and from US Department of Health and Human Services Panel on Treatment of HIV-infected Pregnant Women and Prevention of Perinatal Transmission guidelines. Articles from non-human animal models or that had no original maternal-to-fetal transfer data were excluded. PRISMA guidelines were followed.

Results

A total of 103 published studies were identified. Data across studies appeared relatively consistent for the nucleoside reverse transcriptase inhibitors (NRTIs) and the non-nucleotide reverse transcriptase inhibitors (NNRTIs), with cord to maternal ratios approaching 1 for many of these agents. The protease inhibitors atazanavir and lopinavir exhibited consistent maternal-to-fetal transfer across studies, although the transfer may be influenced by variations in drug-binding proteins. The protease inhibitors indinavir, nelfinavir, and saquinavir exhibited unreliable placental transport, with cord blood concentrations that were frequently undetectable. Limited data, primarily from case reports, indicate that darunavir and raltegravir provide detectable placental transfer.

Conclusion

These findings appear consistent with current guidelines of using two NRTIs plus an NNRTI, atazanavir/ritonavir, or lopinavir/ritonavir to maximize placental transfer as well as to optimally suppress maternal viral load. Darunavir/ritonavir and raltegravir may reasonably serve as second-line agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. U.S. Department of Health and Human Services and NIH. 2014. http://www.aidsinfo.nih.gov/contentfiles/lvguidelines/perinatalgl.pdf. Accessed 10 Apr 2014.

  2. Tubiana R, Le Chenadec J, Rouzioux C, Mandelbrot L, Hamrene K, Dollfus C, et al. Factors associated with mother-to-child transmission of HIV-1 despite a maternal viral load <500 copies/ml at delivery: a case–control study nested in the French perinatal cohort (EPF-ANRS CO1). Clin Infect Dis. 2010;50(4):585–96. doi:10.1086/650005.

    PubMed  Google Scholar 

  3. European Collaborative Study. Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin Infect Dis. 2005;40(3):458–65. doi:10.1086/427287.

    Google Scholar 

  4. Launay O, Tod M, Tschope I, Si-Mohamed A, Belarbi L, Charpentier C, et al. Residual HIV-1 RNA and HIV-1 DNA production in the genital tract reservoir of women treated with HAART: the prospective ANRS EP24 GYNODYN study. Antivir Ther. 2011;16(6):843–52. doi:10.3851/IMP1856.

    PubMed  CAS  Google Scholar 

  5. Carter AM. Animal models of human placentation—a review. Placenta. 2007;28(Suppl A):S41–7. doi:10.1016/j.placenta.2006.11.002.

    PubMed  Google Scholar 

  6. Best BM, Mirochnick M, Capparelli EV, Stek A, Burchett SK, Holland DT, et al. Impact of pregnancy on abacavir pharmacokinetics. AIDS. 2006;20(4):553–60. doi:10.1097/01.aids.0000210609.52836.d1.

    PubMed  CAS  Google Scholar 

  7. Chappuy H, Treluyer JM, Jullien V, Dimet J, Rey E, Fouche M, et al. Maternal-fetal transfer and amniotic fluid accumulation of nucleoside analogue reverse transcriptase inhibitors in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(11):4332–6. doi:10.1128/AAC.48.11.4332-4336.2004.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Moodley D, Pillay K, Naidoo K, Moodley J, Johnson MA, Moore KH, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours. J Clin Pharmacol. 2001;41(7):732–41.

    PubMed  CAS  Google Scholar 

  9. Mandelbrot L, Peytavin G, Firtion G, Farinotti R. Maternal-fetal transfer and amniotic fluid accumulation of lamivudine in human immunodeficiency virus-infected pregnant women. Am J Obstet Gynecol. 2001;184(2):153–8. doi:10.1067/mob.2001.108344.

    PubMed  CAS  Google Scholar 

  10. Yeh RF, Rezk NL, Kashuba AD, Dumond JB, Tappouni HL, Tien HC, et al. Genital tract, cord blood, and amniotic fluid exposures of seven antiretroviral drugs during and after pregnancy in human immunodeficiency virus type 1-infected women. Antimicrob Agents Chemother. 2009;53(6):2367–74. doi:10.1128/AAC.01523-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Benaboud S, Treluyer JM, Urien S, Blanche S, Bouazza N, Chappuy H, et al. Pregnancy-related effects on lamivudine pharmacokinetics in a population study with 228 women. Antimicrob Agents Chemother. 2012;56(2):776–82. doi:10.1128/AAC.00370-11.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Wade NA, Unadkat JD, Huang S, Shapiro DE, Mathias A, Yasin S, et al. Pharmacokinetics and safety of stavudine in HIV-infected pregnant women and their infants: Pediatric AIDS Clinical Trials Group protocol 332. J Infect Dis. 2004;190(12):2167–74. doi:10.1086/425903.

    PubMed  CAS  Google Scholar 

  13. Stek AM, Best BM, Luo W, Capparelli E, Burchett S, Hu C, et al. Effect of pregnancy on emtricitabine pharmacokinetics. HIV Med. 2012;13(4):226–35. doi:10.1111/j.1468-1293.2011.00965.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Colbers AP, Hawkins DA, Gingelmaier A, Kabeya K, Rockstroh JK, Wyen C, et al. The pharmacokinetics, safety and efficacy of tenofovir and emtricitabine in HIV-1-infected pregnant women. AIDS. 2013;27(5):739–48. doi:10.1097/QAD.0b013e32835c208b.

    PubMed  CAS  Google Scholar 

  15. Calcagno A, Trentini L, Marinaro L, Montrucchio C, D’Avolio A, Ghisetti V, et al. Transplacental passage of etravirine and maraviroc in a multidrug-experienced HIV-infected woman failing on darunavir-based HAART in late pregnancy. J Antimicrob Chemother. 2013;68(8):1938–9. doi:10.1093/jac/dkt095.

    PubMed  CAS  Google Scholar 

  16. Mirochnick M, Taha T, Kreitchmann R, Nielsen-Saines K, Kumwenda N, Joao E, et al. Pharmacokinetics and safety of tenofovir in HIV-infected women during labor and their infants during the first week of life. J Acquir Immune Defic Syndr. 2014;65(1):33–41. doi:10.1097/QAI.0b013e3182a921eb.

    PubMed  CAS  Google Scholar 

  17. Beigi R, Noguchi L, Parsons T, Macio I, Kunjara Na Ayudhya RP, Chen J, et al. Pharmacokinetics and placental transfer of single-dose tenofovir 1 % vaginal gel in term pregnancy. J Infect Dis. 2011;204(10):1527–31. doi:10.1093/infdis/jir562.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Watts DH, Brown ZA, Tartaglione T, Burchett SK, Opheim K, Coombs R, et al. Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis. 1991;163(2):226–32.

    PubMed  CAS  Google Scholar 

  19. Sperling RS, Roboz J, Dische R, Silides D, Holzman I, Jew E. Zidovudine pharmacokinetics during pregnancy. Am J Perinatol. 1992;9(4):247–9. doi:10.1055/s-2007-994781.

    PubMed  CAS  Google Scholar 

  20. O’Sullivan MJ, Boyer PJ, Scott GB, Parks WP, Weller S, Blum MR, et al. The pharmacokinetics and safety of zidovudine in the third trimester of pregnancy for women infected with human immunodeficiency virus and their infants: phase I acquired immunodeficiency syndrome clinical trials group study (protocol 082). Zidovudine Collaborative Working Group. Am J Obstet Gynecol. 1993;168(5):1510–6.

    PubMed  Google Scholar 

  21. Moodley J, Moodley D, Pillay K, Coovadia H, Saba J, van Leeuwen R, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J Infect Dis. 1998;178(5):1327–33.

    PubMed  CAS  Google Scholar 

  22. Rodman JH, Flynn PM, Robbins B, Jimenez E, Bardeguez AD, Rodriguez JF, et al. Systemic pharmacokinetics and cellular pharmacology of zidovudine in human immunodeficiency virus type 1-infected women and newborn infants. J Infect Dis. 1999;180(6):1844–50. doi:10.1086/315152.

    PubMed  CAS  Google Scholar 

  23. Bhadrakom C, Simonds RJ, Mei JV, Asavapiriyanont S, Sangtaweesin V, Vanprapar N, et al. Oral zidovudine during labor to prevent perinatal HIV transmission, Bangkok: tolerance and zidovudine concentration in cord blood. Bangkok Collaborative Perinatal HIV Transmission Study Group. AIDS. 2000;14(5):509–16.

    PubMed  CAS  Google Scholar 

  24. Mirochnick M, Rodman JH, Robbins BL, Fridland A, Gandia J, Hitti J, et al. Pharmacokinetics of oral zidovudine administered during labour: a preliminary study. HIV Med. 2007;8(7):451–6. doi:10.1111/j.1468-1293.2007.00495.x.

    PubMed  CAS  Google Scholar 

  25. Siu SS, Yeung JH, Pang MW, Chiu PY, Lau TK. Placental transfer of zidovudine in first trimester of pregnancy. Obstet Gynecol. 2005;106(4):824–7. doi:10.1097/01.AOG.0000178160.38042.04.

    PubMed  CAS  Google Scholar 

  26. Gillet JY, Bongain A, Abrar D, Garraffo R, Lapalus P. Preliminary study on the transport of AZT (retrovir-zidovudine) through the placenta. J Gynecol Obstet Biol Reprod (Paris). 1990;19(2):177–80.

    PubMed  CAS  Google Scholar 

  27. Pons JC, Taburet AM, Singlas E, Delfraissy JF, Papiernik E. Placental passage of azathiothymidine (AZT) during the second trimester of pregnancy: study by direct fetal blood sampling under ultrasound. Eur J Obstet Gynecol Reprod Biol. 1991;40(3):229–31.

    PubMed  CAS  Google Scholar 

  28. Cressey TR, Stek A, Capparelli E, Bowonwatanuwong C, Prommas S, Sirivatanapa P, et al. Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J Acquir Immune Defic Syndr. 2012;59(3):245–52. doi:10.1097/QAI.0b013e31823ff052.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Gandhi M, Mwesigwa J, Aweeka F, Plenty A, Charlebois E, Ruel TD, et al. Hair and plasma data show that lopinavir, ritonavir, and efavirenz all transfer from mother to infant in utero, but only efavirenz transfers via breastfeeding. J Acquir Immune Defic Syndr. 2013;63(5):578–84. doi:10.1097/QAI.0b013e31829c48ad.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Izurieta P, Kakuda TN, Feys C, Witek J. Safety and pharmacokinetics of etravirine in pregnant HIV-1-infected women. HIV Med. 2011;12(4):257–8. doi:10.1111/j.1468-1293.2010.00874.x.

    PubMed  CAS  Google Scholar 

  31. Furco A, Gosrani B, Nicholas S, Williams A, Braithwaite W, Pozniak A, et al. Successful use of darunavir, etravirine, enfuvirtide and tenofovir/emtricitabine in pregnant woman with multiclass HIV resistance. AIDS. 2009;23(3):434–5. doi:10.1097/QAD.0b013e32832027d6.

    PubMed  Google Scholar 

  32. Marzolini C, Rudin C, Decosterd LA, Telenti A, Schreyer A, Biollaz J, et al. Transplacental passage of protease inhibitors at delivery. AIDS. 2002;16(6):889–93.

    PubMed  CAS  Google Scholar 

  33. Gingelmaier A, Kurowski M, Kastner R, Eberle J, Mylonas I, Belohradsky BH, et al. Placental transfer and pharmacokinetics of lopinavir and other protease inhibitors in combination with nevirapine at delivery. AIDS. 2006;20(13):1737–43. doi:10.1097/01.aids.0000242820.67001.2c.

    PubMed  CAS  Google Scholar 

  34. Capparelli EV, Aweeka F, Hitti J, Stek A, Hu C, Burchett SK, et al. Chronic administration of nevirapine during pregnancy: impact of pregnancy on pharmacokinetics. HIV Med. 2008;9(4):214–20. doi:10.1111/j.1468-1293.2008.00553.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Ivanovic J, Nicastri E, Anceschi MM, Ascenzi P, Signore F, Pisani G, et al. Transplacental transfer of antiretroviral drugs and newborn birth weight in HIV-infected pregnant women. Curr HIV Res. 2009;7(6):620–5.

    PubMed  CAS  Google Scholar 

  36. van Hoog S, Boer K, Nellen J, Scherpbier H, Godfried MH. Transplacental passage of nevirapine, nelfinavir and lopinavir. Neth J Med. 2012;70(2):102–3.

    PubMed  Google Scholar 

  37. Taylor GP, Lyall EGH, Back D, Ward C, Tudor-Williams G. Pharmacological implications of lengthened in-utero exposure to nevirapine. Lancet. 2000;355(9221):2134–5.

    PubMed  CAS  Google Scholar 

  38. Mirochnick M, Fenton T, Gagnier P, Pav J, Gwynne M, Siminski S, et al. Pharmacokinetics of nevirapine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Pediatric AIDS Clinical Trials Group Protocol 250 Team. J Infect Dis. 1998;178(2):368–74.

    PubMed  CAS  Google Scholar 

  39. Musoke P, Guay LA, Bagenda D, Mirochnick M, Nakabiito C, Fleming T, et al. A phase I/II study of the safety and pharmacokinetics of nevirapine in HIV-1-infected pregnant Ugandan women and their neonates (HIVNET 006). AIDS. 1999;13(4):479–86.

    PubMed  CAS  Google Scholar 

  40. Mirochnick M, Dorenbaum A, Blanchard S, Cunningham CK, Gelber RD, Mofenson L, et al. Predose infant nevirapine concentration with the two-dose intrapartum neonatal nevirapine regimen: association with timing of maternal intrapartum nevirapine dose. J Acquir Immune Defic Syndr. 2003;33(2):153–6.

    PubMed  Google Scholar 

  41. Benaboud S, Ekouevi DK, Urien S, Rey E, Arrive E, Blanche S, et al. Population pharmacokinetics of nevirapine in HIV-1-infected pregnant women and their neonates. Antimicrob Agents Chemother. 2011;55(1):331–7. doi:10.1128/AAC.00631-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Colbers A, Gingelmaier A, van de Ende M, Rijnders B, Burger D. Pharmacokinetics, safety and transplacental passage of rilpivirine in pregnancy: two cases. AIDS. 2014;28(2):288–90. doi:10.1097/QAD.0000000000000100.

    PubMed  Google Scholar 

  43. Ripamonti D, Cattaneo D, Maggiolo F, Airoldi M, Frigerio L, Bertuletti P, et al. Atazanavir plus low-dose ritonavir in pregnancy: pharmacokinetics and placental transfer. AIDS. 2007;21(18):2409–15. doi:10.1097/QAD.0b013e32825a69d1.

    PubMed  CAS  Google Scholar 

  44. Mirochnick M, Best BM, Stek AM, Capparelli EV, Hu C, Burchett SK, et al. Atazanavir pharmacokinetics with and without tenofovir during pregnancy. J Acquir Immune Defic Syndr. 2011;56(5):412–9. doi:10.1097/QAI.0b013e31820fd093.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Mandelbrot L, Mazy F, Floch-Tudal C, Meier F, Azria E, Crenn-Hebert C, et al. Atazanavir in pregnancy: impact on neonatal hyperbilirubinemia. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):18–21. doi:10.1016/j.ejogrb.2011.02.005.

    PubMed  CAS  Google Scholar 

  46. Conradie F, Zorrilla C, Josipovic D, Botes M, Osiyemi O, Vandeloise E, et al. Safety and exposure of once-daily ritonavir-boosted atazanavir in HIV-infected pregnant women. HIV Med. 2011;12(9):570–9. doi:10.1111/j.1468-1293.2011.00927.x.

    PubMed  CAS  Google Scholar 

  47. Kreitchmann R, Best BM, Wang J, Stek A, Caparelli E, Watts DH, et al. Pharmacokinetics of an increased atazanavir dose with and without tenofovir during the third trimester of pregnancy. J Acquir Immune Defic Syndr. 2013;63(1):59–66. doi:10.1097/QAI.0b013e318289b4d2.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Lechelt M, Lyons F, Clarke A, Magaya V, Issa R, de Ruiter A. Human placental transfer of atazanavir: a case report. AIDS. 2006;20(2):307.

    PubMed  Google Scholar 

  49. Stek AM, Mirochnick M, Capparelli E, Best BM, Hu C, Burchett SK, et al. Reduced lopinavir exposure during pregnancy. AIDS. 2006;20(15):1931–9. doi:10.1097/01.aids.0000247114.43714.90.

    PubMed  CAS  Google Scholar 

  50. Croci L, Trezzi M, Allegri MP, Carli T, Chigiotti S, Riccardi MP, et al. Pharmacokinetic and safety of raltegravir in pregnancy. Eur J Clin Pharmacol. 2012;68(8):1231–2. doi:10.1007/s00228-012-1250-5.

    PubMed  Google Scholar 

  51. Else LJ, Douglas M, Dickinson L, Back DJ, Khoo SH, Taylor GP. Improved oral bioavailability of lopinavir in melt-extruded tablet formulation reduces impact of third trimester on lopinavir plasma concentrations. Antimicrob Agents Chemother. 2012;56(2):816–24. doi:10.1128/AAC.05186-11.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Fayet-Mello A, Buclin T, Guignard N, Cruchon S, Cavassini M, Grawe C, et al. Free and total plasma levels of lopinavir during pregnancy, at delivery and postpartum: implications for dosage adjustments in pregnant women. Antivir Ther. 2013;18(2):171–82. doi:10.3851/IMP2328.

    PubMed  CAS  Google Scholar 

  53. Santini-Oliveira M, Estrela Rde C, Veloso VG, Cattani VB, Yanavich C, Velasque L, et al. Randomized clinical trial comparing the pharmacokinetics of standard- and increased-dosage lopinavir-ritonavir coformulation tablets in HIV-positive pregnant women. Antimicrob Agents Chemother. 2014;58(5):2884–93. doi:10.1128/AAC.02599-13.

    PubMed  Google Scholar 

  54. Mirochnick M, Best BM, Stek AM, Capparelli E, Hu C, Burchett SK, et al. Lopinavir exposure with an increased dose during pregnancy. J Acquir Immune Defic Syndr. 2008;49(5):485–91. doi:10.1097/QAI.0b013e318186edd0.

    PubMed  PubMed Central  Google Scholar 

  55. Best BM, Stek AM, Mirochnick M, Hu C, Li H, Burchett SK, et al. Lopinavir tablet pharmacokinetics with an increased dose during pregnancy. J Acquir Immune Defic Syndr. 2010;54(4):381–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Mirochnick M, Dorenbaum A, Holland D, Cunningham-Schrader B, Cunningham C, Gelber R, et al. Concentrations of protease inhibitors in cord blood after in utero exposure. Pediatr Infect Dis J. 2002;21(9):835–8. doi:10.1097/01.inf.0000027591.04920.c7.

    PubMed  Google Scholar 

  57. Chappuy H, Treluyer JM, Rey E, Dimet J, Fouche M, Firtion G, et al. Maternal-fetal transfer and amniotic fluid accumulation of protease inhibitors in pregnant women who are infected with human immunodeficiency virus. Am J Obstet Gynecol. 2004;191(2):558–62. doi:10.1016/j.ajog.2004.01.034.

    PubMed  CAS  Google Scholar 

  58. van Heeswijk RP, Khaliq Y, Gallicano KD, Bourbeau M, Seguin I, Phillips EJ, et al. The pharmacokinetics of nelfinavir and M8 during pregnancy and post partum. Clin Pharmacol Ther. 2004;76(6):588–97. doi:10.1016/j.clpt.2004.08.011.

    PubMed  Google Scholar 

  59. Villani P, Floridia M, Pirillo MF, Cusato M, Tamburrini E, Cavaliere AF, et al. Pharmacokinetics of nelfinavir in HIV-1-infected pregnant and nonpregnant women. Br J Clin Pharmacol. 2006;62(3):309–15. doi:10.1111/j.1365-2125.2006.02669.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Hirt D, Urien S, Jullien V, Firtion G, Chappuy H, Rey E, et al. Pharmacokinetic modelling of the placental transfer of nelfinavir and its M8 metabolite: a population study using 75 maternal-cord plasma samples. Br J Clin Pharmacol. 2007;64(5):634–44. doi:10.1111/j.1365-2125.2007.02885.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Bryson YJ, Mirochnick M, Stek A, Mofenson LM, Connor J, Capparelli E, et al. Pharmacokinetics and safety of nelfinavir when used in combination with zidovudine and lamivudine in HIV-infected pregnant women: Pediatric AIDS Clinical Trials Group (PACTG) Protocol 353. HIV Clin Trials. 2008;9(2):115–25. doi:10.1310/hct0902-115.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Read JS, Best BM, Stek AM, Hu C, Capparelli EV, Holland DT, et al. Pharmacokinetics of new 625 mg nelfinavir formulation during pregnancy and postpartum. HIV Med. 2008;9(10):875–82. doi:10.1111/j.1468-1293.2008.00640.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Cressey TR, Best BM, Achalapong J, Stek A, Wang J, Chotivanich N, et al. Reduced indinavir exposure during pregnancy. Br J Clin Pharmacol. 2013;76(3):475–83. doi:10.1111/bcp.12078.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Acosta EP, Zorrilla C, Van Dyke R, Bardeguez A, Smith E, Hughes M, et al. Pharmacokinetics of saquinavir-SGC in HIV-infected pregnant women. HIV Clin Trials. 2001;2(6):460–5.

    PubMed  CAS  Google Scholar 

  65. Vithayasai V, Moyle GJ, Supajatura V, Wattanatchariya N, Kanshana S, Sirichthaporn P, et al. Safety and efficacy of saquinavir soft-gelatin capsules + zidovudine + optional lamivudine in pregnancy and prevention of vertical HIV transmission. J Acquir Immune Defic Syndr. 2002;30(4):410–2.

    PubMed  CAS  Google Scholar 

  66. Acosta EP, Bardeguez A, Zorrilla CD, Van Dyke R, Hughes MD, Huang S, et al. Pharmacokinetics of saquinavir plus low-dose ritonavir in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(2):430–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Ripamonti D, Cattaneo D, Cortinovis M, Maggiolo F, Suter F. Transplacental passage of ritonavir-boosted darunavir in two pregnant women. Int J STD AIDS. 2009;20(3):215–6. doi:10.1258/ijsa.2008.008515.

    PubMed  CAS  Google Scholar 

  68. Ivanovic J, Bellagamba R, Nicastri E, Signore F, Vallone C, Tempestilli M, et al. Use of darunavir/ritonavir once daily in treatment-naive pregnant woman: pharmacokinetics, compartmental exposure, efficacy and safety. AIDS. 2010;24(7):1083–4. doi:10.1097/QAD.0b013e32833653b2.

    PubMed  Google Scholar 

  69. Pinnetti C, Tamburrini E, Ragazzoni E, De Luca A, Navarra P. Decreased plasma levels of darunavir/ritonavir in a vertically infected pregnant woman carrying multiclass-resistant HIV type-1. Antivir Ther. 2010;15(1):127–9. doi:10.3851/IMP1473.

    PubMed  CAS  Google Scholar 

  70. Zorrilla CD, Wright R, Osiyemi OO, Yasin S, Baugh B, Brown K, et al. Total and unbound darunavir pharmacokinetics in pregnant women infected with HIV-1: results of a study of darunavir/ritonavir 600/100 mg administered twice daily. HIV Med. 2014;15(1):50–6. doi:10.1111/hiv.12047.

    PubMed  CAS  Google Scholar 

  71. Cespedes MS, Castor D, Ford SL, Lee D, Lou Y, Pakes GE, et al. Steady-state pharmacokinetics, cord blood concentrations, and safety of ritonavir-boosted fosamprenavir in pregnancy. J Acquir Immune Defic Syndr. 2013;62(5):550–4. doi:10.1097/QAI.0b013e318285d918.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Weizsaecker K, Kurowski M, Hoffmeister B, Schurmann D, Feiterna-Sperling C. Pharmacokinetic profile in late pregnancy and cord blood concentration of tipranavir and enfuvirtide. Int J STD AIDS. 2011;22(5):294–5. doi:10.1258/ijsa.2009.009166.

    PubMed  CAS  Google Scholar 

  73. Brennan-Benson P, Pakianathan M, Rice P, Bonora S, Chakraborty R, Sharland M, et al. Enfurvitide prevents vertical transmission of multidrug-resistant HIV-1 in pregnancy but does not cross the placenta. AIDS. 2006;20(2):297–9. doi:10.1097/01.aids.0000200535.02232.1b.

    PubMed  CAS  Google Scholar 

  74. Jeantils V, Alloui C, Rodrigues A, Bentata M, Peytavin G, Carbillon L. Use of enfurvitide in pregnancy in HIV positive women in seven cases. Gynecol Obstet Fertil. 2009;37(5):396–400. doi:10.1016/j.gyobfe.2009.03.013.

    PubMed  CAS  Google Scholar 

  75. McKeown DA, Rosenvinge M, Donaghy S, Sharland M, Holt DW, Cormack I, et al. High neonatal concentrations of raltegravir following transplacental transfer in HIV-1 positive pregnant women. AIDS. 2010;24(15):2416–8. doi:10.1097/QAD.0b013e32833d8a50.

    PubMed  Google Scholar 

  76. Hegazi A, Mc Keown D, Doerholt K, Donaghy S, Sadiq ST, Hay P. Raltegravir in the prevention of mother-to-child transmission of HIV-1: effective transplacental transfer and delayed plasma clearance observed in preterm neonates. AIDS. 2012;26(18):2421–3. doi:10.1097/QAD.0b013e32835a9aeb.

    PubMed  Google Scholar 

  77. Hirt D, Urien S, Rey E, Arrive E, Ekouevi DK, Coffie P, et al. Population pharmacokinetics of emtricitabine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Antimicrob Agents Chemother. 2009;53(3):1067–73. doi:10.1128/AAC.00860-08.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Hirt D, Pruvost A, Ekouevi DK, Urien S, Arrive E, Kone M, et al. Very high concentrations of active intracellular phosphorylated emtricitabine in neonates (ANRS 12109 trial, step 2). Antimicrob Agents Chemother. 2011;55(6):2953–60. doi:10.1128/AAC.01376-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Hirt D, Urien S, Ekouevi DK, Rey E, Arrive E, Blanche S, et al. Population pharmacokinetics of tenofovir in HIV-1-infected pregnant women and their neonates (ANRS 12109). Clin Pharmacol Ther. 2009;85(2):182–9. doi:10.1038/clpt.2008.201.

    PubMed  CAS  Google Scholar 

  80. Hirt D, Ekouevi DK, Pruvost A, Urien S, Arrive E, Blanche S, et al. Plasma and intracellular tenofovir pharmacokinetics in the neonate (ANRS 12109 trial, step 2). Antimicrob Agents Chemother. 2011;55(6):2961–7. doi:10.1128/AAC.01377-10.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Frank M, Harms G, Kunz A, Kloft C. Population pharmacokinetic analysis of a nevirapine-based HIV-1 prevention of mother-to-child transmission program in Uganda to assess the impact of different dosing regimens for newborns. J Clin Pharmacol. 2013;53(3):294–304. doi:10.1177/0091270012448397.

    PubMed  CAS  Google Scholar 

  82. Bawdon RE. The ex vivo human placental transfer of the anti-HIV nucleoside inhibitor abacavir and the protease inhibitor amprenavir. Infect Dis Obstet Gynecol. 1998;6(6):244–6. doi:10.1155/S1064744998000507.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Bawdon RE, Sobhi S, Dax J. The transfer of anti-human immunodeficiency virus nucleoside compounds by the term human placenta. Am J Obstet Gynecol. 1992;167(6):1570–4.

    PubMed  CAS  Google Scholar 

  84. Dancis J, Lee JD, Mendoza S, Liebes L. Transfer and metabolism of dideoxyinosine by the perfused human placenta. J Acquir Immune Defic Syndr. 1993;6(1):2–6.

    PubMed  CAS  Google Scholar 

  85. Henderson GI, Perez AB, Yang Y, Hamby RL, Schenken RS, Schenker S. Transfer of dideoxyinosine across the human isolated placenta. Br J Clin Pharmacol. 1994;38(3):237–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Bloom SL, Dias KM, Bawdon RE, Gilstrap LC 3rd. The maternal-fetal transfer of lamivudine in the ex vivo human placenta. Am J Obstet Gynecol. 1997;176(2):291–3.

    PubMed  CAS  Google Scholar 

  87. Bawdon RE, Kaul S, Sobhi S. The ex vivo transfer of the anti-HIV nucleoside compound d4T in the human placenta. Gynecol Obstet Invest. 1994;38(1):1–4.

    PubMed  CAS  Google Scholar 

  88. Casey BM, Bawdon RE. Placental transfer of ritonavir with zidovudine in the ex vivo placental perfusion model. Am J Obstet Gynecol. 1998;179(3 Pt 1):758–61.

    PubMed  CAS  Google Scholar 

  89. Boal JH, Plessinger MA, van den Reydt C, Miller RK. Pharmacokinetic and toxicity studies of AZT (zidovudine) following perfusion of human term placenta for 14 hours. Toxicol Appl Pharmacol. 1997;143(1):13–21. doi:10.1006/taap.1996.8046.

    PubMed  CAS  Google Scholar 

  90. Olivero OA, Parikka R, Poirier MC, Vahakangas K. 3′-azido-3′-deoxythymidine (AZT) transplacental perfusion kinetics and DNA incorporation in normal human placentas perfused with AZT. Mutat Res. 1999;428(1–2):41–7.

    PubMed  CAS  Google Scholar 

  91. Forestier F, de Renty P, Peytavin G, Dohin E, Farinotti R, Mandelbrot L. Maternal-fetal transfer of saquinavir studied in the ex vivo placental perfusion model. Am J Obstet Gynecol. 2001;185(1):178–81. doi:10.1067/mob.2001.113319.

    PubMed  CAS  Google Scholar 

  92. Rahi M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, Wadelius M, et al. Influence of adenosine triphosphate and ABCB1 (MDR1) genotype on the P-glycoprotein-dependent transfer of saquinavir in the dually perfused human placenta. Hum Exp Toxicol. 2008;27(1):65–71. doi:10.1177/0960327108088971.

    PubMed  CAS  Google Scholar 

  93. Molsa M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, Wadelius M, et al. Functional role of P-glycoprotein in the human blood–placental barrier. Clin Pharmacol Ther. 2005;78(2):123–31. doi:10.1016/j.clpt.2005.04.014.

    PubMed  Google Scholar 

  94. Rahi MM, Heikkinen TM, Hakala KE, Laine KP. The effect of probenecid and MK-571 on the feto-maternal transfer of saquinavir in dually perfused human term placenta. Eur J Pharm Sci. 2009;37(5):588–92. doi:10.1016/j.ejps.2009.05.005.

    PubMed  CAS  Google Scholar 

  95. Sudhakaran S, Ghabrial H, Nation RL, Kong DC, Gude NM, Angus PW, et al. Differential bidirectional transfer of indinavir in the isolated perfused human placenta. Antimicrob Agents Chemother. 2005;49(3):1023–8. doi:10.1128/AAC.49.3.1023-1028.2005.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Sudhakaran S, Rayner CR, Li J, Kong DC, Gude NM, Nation RL. Inhibition of placental P-glycoprotein: impact on indinavir transfer to the foetus. Br J Clin Pharmacol. 2008;65(5):667–73. doi:10.1111/j.1365-2125.2007.03067.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Gavard L, Gil S, Peytavin G, Ceccaldi PF, Ferreira C, Farinotti R, et al. Placental transfer of lopinavir/ritonavir in the ex vivo human cotyledon perfusion model. Am J Obstet Gynecol. 2006;195(1):296–301. doi:10.1016/j.ajog.2006.01.017.

    PubMed  CAS  Google Scholar 

  98. Gavard L, Beghin D, Forestier F, Cayre Y, Peytavin G, Mandelbrot L, et al. Contribution and limit of the model of perfused cotyledon to the study of placental transfer of drugs. Example of a protease inhibitor of HIV: nelfinavir. Eur J Obstet Gynecol Reprod Biol. 2009;147(2):157–60. doi:10.1016/j.ejogrb.2009.08.007.

    PubMed  CAS  Google Scholar 

  99. Vinot C, Gavard L, Treluyer JM, Manceau S, Courbon E, Scherrmann JM, et al. Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression. Antimicrob Agents Chemother. 2013;57(3):1415–20. doi:10.1128/AAC.01821-12.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Ceccaldi PF, Ferreira C, Gavard L, Gil S, Peytavin G, Mandelbrot L. Placental transfer of enfuvirtide in the ex vivo human placenta perfusion model. Am J Obstet Gynecol. 2008;198(4):433 e1–2. doi:10.1016/j.ajog.2007.10.802.

  101. Nishimura T, Seki Y, Sato K, Chishu T, Kose N, Terasaki T, et al. Enhancement of zidovudine uptake by dehydroepiandrosterone sulfate in rat syncytiotrophoblast cell line TR-TBT 18d-1. Drug Metab Dispos. 2008;36(10):2080–5. doi:10.1124/dmd.108.021345.

    PubMed  CAS  Google Scholar 

  102. Plessinger MA, Boal JH, Miller RK. Human placenta does not reduce AZT (zidovudine) to 3′-amino-3′-deoxythymidine. Proc Soc Exp Biol Med. 1997;215(3):243–7.

    PubMed  CAS  Google Scholar 

  103. Olivero OA, Shearer GM, Chougnet CA, Kovacs AA, Baker R, Stek AM, et al. Incorporation of zidovudine into cord blood DNA of infants and peripheral blood DNA of their HIV-1-positive mothers. Ann NY Acad Sci. 2000;918:262–8.

    PubMed  CAS  Google Scholar 

  104. Andre-Schmutz I, Dal-Cortivo L, Six E, Kaltenbach S, Cocchiarella F, Le Chenadec J, et al. Genotoxic signature in cord blood cells of newborns exposed in utero to a zidovudine-based antiretroviral combination. J Infect Dis. 2013;208(2):235–43. doi:10.1093/infdis/jit149.

    PubMed  CAS  Google Scholar 

  105. Camus M, Delomenie C, Didier N, Faye A, Gil S, Dauge MC, et al. Increased expression of MDR1 mRNAs and P-glycoprotein in placentas from HIV-1 infected women. Placenta. 2006;27(6–7):699–706. doi:10.1016/j.placenta.2005.08.001.

    PubMed  CAS  Google Scholar 

  106. Neumanova Z, Cerveny L, Ceckova M, Staud F. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS. 2014;28(1):9–17. doi:10.1097/QAD.0000000000000112.

    PubMed  CAS  Google Scholar 

  107. Sudhakaran S, Rayner CR, Li J, Kong DC, Gude NM, Nation RL. Differential protein binding of indinavir and saquinavir in matched maternal and umbilical cord plasma. Br J Clin Pharmacol. 2007;63(3):315–21. doi:10.1111/j.1365-2125.2006.02766.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Gulati A, Boudinot FD, Gerk PM. Binding of lopinavir to human alpha1-acid glycoprotein and serum albumin. Drug Metab Dispos. 2009;37(8):1572–5. doi:10.1124/dmd.109.026708.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2004;48(2):437–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Drusano GL, Bilello JA, Preston SL, O’Mara E, Kaul S, Schnittman S, et al. Hollow-fiber unit evaluation of a new human immunodeficiency virus type 1 protease inhibitor, BMS-232632, for determination of the linked pharmacodynamic variable. J Infect Dis. 2001;183(7):1126–9. doi:10.1086/319281.

    PubMed  CAS  Google Scholar 

  111. Acosta EP, Limoli KL, Trinh L, Parkin NT, King JR, Weidler JM, et al. Novel method to assess antiretroviral target trough concentrations using in vitro susceptibility data. Antimicrob Agents Chemother. 2012;56(11):5938–45. doi:10.1128/AAC.00691-12.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Author S. A. McCormack was supported by the National Institutes of Health, Grant TL1TR00098. B. M. Best has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brookie M. Best.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormack, S.A., Best, B.M. Protecting the Fetus Against HIV Infection: A Systematic Review of Placental Transfer of Antiretrovirals. Clin Pharmacokinet 53, 989–1004 (2014). https://doi.org/10.1007/s40262-014-0185-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0185-7

Keywords

Navigation