Skip to main content
Log in

Clinical Pharmacokinetics of Drugs in Patients with Heart Failure: An Update (Part 2, Drugs Administered Orally)

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The purpose of the present review article is to update the information regarding pharmacokinetics of drugs in patients with heart failure that has accumulated since the last review article published in 1988 in Clinical Pharmacokinetics. Since this last review, our understanding of the pathophysiology of heart failure has changed from the cardio-renal model to the neuro-humoral model, and the pharmacologic approach to treatment of heart failure has been shifted from inotropic agents to those acting on the renin-angiotensin-aldosterone system. The pharmacologic agents now used for heart failure include many important classes of drugs, such as ACE inhibitors, angiotensin receptor blockers (antagonists) (ARBs), and mineralocorticoid receptor antagonists. In Part 1 of this review, we summarized the pharmacokinetic properties of relevant drugs administered intravenously. In Part 2, the present article, we describe pharmacokinetics of drugs following oral administration. For this purpose we conducted a systematic search of literature using MEDLINE, EMBASE, and Japan Centra Revuo Medicina (in Japanese). We retrieved a total of 110 relevant publications for 49 drugs and updated the information for ten drugs and provided new information for 31 drugs. We recognized that the pharmacokinetic data were obtained primarily from stable heart failure patients with moderate severity [New York Heart Association (NYHA) class II or III]. In addition, most patients were classified as heart failure with reduced ejection fraction. Furthermore, because most of the studies retrieved had no comparative groups of healthy subjects or patients without heart failure, historical controls from previous studies were used for comparisons. In Part 2, we also discuss the pharmacokinetics of active metabolites as well as parent drugs, because many drugs given by oral administration for the treatment of heart failure are prodrugs (e.g., ACE inhibitors and ARBs). The pharmacokinetic changes of drugs in patients with heart failure are discussed in the light of a physiologically based pharmacokinetic model. In addition, we discuss the effects of intestinal tissue heart failure-associated edema on drug absorption as it relates to the biopharmaceutical classification system, particularly for drugs demonstrating reduced systemic exposure as measured by the area under the plasma concentration–time curve after oral administration (AUCpo) in patients with heart failure as compared with healthy subjects. After review of the available data, it was seen that among patients with asymptomatic or compensated chronic heart failure there seemed to be no or minimal alterations in the maximum concentration (C max) and AUCpo of the included drugs, unless there was concurrent liver and/or renal dysfunction. In contrast, the AUCpo of at least 14 drugs (captopril, cilazaprilat, enalapril/enalaprilat, perindopril, carvedilol, candesartan, pilsicainide, felodipine, furosemide, enoximone, milrinone, flosequinan, molsidomine, and ibopamine) were suspected or documented to increase after oral administration by 50 % or more in patients with symptomatic or decompensated heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mann DL. Pathophysiology of heart failure. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 487–504.

    Google Scholar 

  2. Fradette C, Du Souich P. Effect of hypoxia on cytochrome P450 activity and expression. Curr Drug Metab. 2004;5(3):257–71.

    CAS  PubMed  Google Scholar 

  3. Zordoky BN, El-Kadi AO. Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr Drug Metab. 2008;9(2):122–8.

    CAS  PubMed  Google Scholar 

  4. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    PubMed Central  PubMed  Google Scholar 

  6. Giallourakis CC, Rosenberg PM, Friedman LS. The liver in heart failure. Clin Liver Dis. 2002;6(4):947–67, viii-ix.

  7. Li P, Robertson TA, Zhang Q, Fletcher LM, Crawford DH, Weiss M, et al. Hepatocellular necrosis, fibrosis and microsomal activity determine the hepatic pharmacokinetics of basic drugs in right-heart-failure-induced liver damage. Pharm Res. 2012;29(6):1658–69.

    PubMed  Google Scholar 

  8. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. 4th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2011.

  9. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    CAS  PubMed  Google Scholar 

  10. Arutyunov GP, Kostyukevich OI, Serov RA, Rylova NV, Bylova NA. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125(2):240–5.

    PubMed  Google Scholar 

  11. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    CAS  PubMed  Google Scholar 

  12. Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm. 2006;3(6):686–94.

    CAS  PubMed  Google Scholar 

  13. U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER). Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Silver Spring: U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER); 2000.

  14. Brater DC, Day B, Burdette A, Anderson S. Bumetanide and furosemide in heart failure. Kidney Int. 1984;26(2):183–9.

    CAS  PubMed  Google Scholar 

  15. Greither A, Goldman S, Edelen JS, Benet LZ, Cohn K. Pharmacokinetics of furosemide in patients with congestive heart failure. Pharmacology. 1979;19(3):121–31.

    CAS  PubMed  Google Scholar 

  16. Easthope SE, Jarvis B. Candesartan cilexetil: an update of its use in essential hypertension. Drugs. 2002;62(8):1253–87.

    CAS  PubMed  Google Scholar 

  17. van Lier JJ, van Heiningen PN, Sunzel M. Absorption, metabolism and excretion of 14C-candesartan and 14C-candesartan cilexetil in healthy volunteers. J Hum Hypertens. 1997;11(Suppl 2):S27–8.

    PubMed  Google Scholar 

  18. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 2006;3(6):631–43.

    CAS  PubMed  Google Scholar 

  19. The Merk index. 15th ed. Whitehouse Station: Merck & Co., Inc.; 2013.

  20. Warren JV, Brannon ES, Merrill AJ. A method of obtaining renal venous blood in unanesthetized persons with observations on the extraction of oxygen and sodium para-aminohippurate. Science. 1944;100(2588):108–10.

    CAS  PubMed  Google Scholar 

  21. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.

    CAS  PubMed  Google Scholar 

  22. Gill KS, Wood MJ. The clinical pharmacokinetics of famciclovir. Clin Pharmacokinet. 1996;31(1):1–8.

    CAS  PubMed  Google Scholar 

  23. Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure: an updated review. Clin Pharmacokinet. 1988;15(2):94–113.

    CAS  PubMed  Google Scholar 

  24. The Cardiac Insufficiency Bisoprolol Study II. (CIBIS-II): a randomised trial. Lancet. 1999;353(9146):9–13.

    Google Scholar 

  25. Leopold G, Pabst J, Ungethum W, Buhring KU. Basic pharmacokinetics of bisoprolol, a new highly beta 1-selective adrenoceptor antagonist. J Clin Pharmacol. 1986;26(8):616–21.

    CAS  PubMed  Google Scholar 

  26. Kirch W, Rose I, Demers HG, Leopold G, Pabst J, Ohnhaus EE. Pharmacokinetics of bisoprolol during repeated oral administration to healthy volunteers and patients with kidney or liver disease. Clin Pharmacokinet. 1987;13(2):110–7.

    CAS  PubMed  Google Scholar 

  27. Buhring KU, Sailer H, Faro HP, Leopold G, Pabst J, Garbe A. Pharmacokinetics and metabolism of bisoprolol-14C in three animal species and in humans. J Cardiovasc Pharmacol. 1986;8(Suppl 11):S21–8.

    PubMed  Google Scholar 

  28. Nikolic VN, Jevtovic-Stoimenov T, Velickovic-Radovanovic R, Ilic S, Deljanin-Ilic M, Marinkovic D, et al. Population pharmacokinetics of bisoprolol in patients with chronic heart failure. Eur J Clin Pharmacol. 2013;69(4):859–65.

    PubMed  Google Scholar 

  29. COREG® (carvedilol) tablets [package insert]. Research Triangle Park: Glaxo SmithKline LLC; 2013.

  30. Keating GM, Jarvis B. Carvedilol: a review of its use in chronic heart failure. Drugs. 2003;63(16):1697–741.

    CAS  PubMed  Google Scholar 

  31. McTavish D, Campoli-Richards D, Sorkin EM. Carvedilol. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs. 1993;45(2):232–58.

    CAS  PubMed  Google Scholar 

  32. Gehr TW, Tenero DM, Boyle DA, Qian Y, Sica DA, Shusterman NH. The pharmacokinetics of carvedilol and its metabolites after single and multiple dose oral administration in patients with hypertension and renal insufficiency. Eur J Clin Pharmacol. 1999;55(4):269–77.

    CAS  PubMed  Google Scholar 

  33. Tenero D, Boike S, Boyle D, Ilson B, Fesniak HF, Brozena S, et al. Steady-state pharmacokinetics of carvedilol and its enantiomers in patients with congestive heart failure. J Clin Pharmacol. 2000;40(8):844–53.

    CAS  PubMed  Google Scholar 

  34. Nikolic VN, Jankovic SM, Velickovic-Radovanovic R, Apostolovic S, Stanojevic D, Zivanovic S, et al. Population pharmacokinetics of carvedilol in patients with congestive heart failure. J Pharm Sci. 2013;102(8):2851–8.

    CAS  PubMed  Google Scholar 

  35. Neugebauer G, Akpan W, Kaufmann B, Reiff K. Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol. 1990;38(Suppl 2):S108–11.

    CAS  PubMed  Google Scholar 

  36. Horiuchi I, Nozawa T, Fujii N, Inoue H, Honda M, Shimizu T, et al. Pharmacokinetics of R- and S-Carvedilol in routinely treated Japanese patients with heart failure. Biol Pharm Bull. 2008;31(5):976–80.

    CAS  PubMed  Google Scholar 

  37. Saito M, Kawana J, Ohno T, Hanada K, Kaneko M, Mihara K, et al. Population pharmacokinetics of R- and S-carvedilol in Japanese patients with chronic heart failure. Biol Pharm Bull. 2010;33(8):1378–84.

    CAS  PubMed  Google Scholar 

  38. Laer S, Mir TS, Behn F, Eiselt M, Scholz H, Venzke A, et al. Carvedilol therapy in pediatric patients with congestive heart failure: a study investigating clinical and pharmacokinetic parameters. Am Heart J. 2002;143(5):916–22.

    PubMed  Google Scholar 

  39. Albers S, Meibohm B, Mir TS, Laer S. Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br J Clin Pharmacol. 2008;65(4):511–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. TOPROL-XL® (metoprolol succinate) extended-release tablets [package insert]. Wilmington: AstraZeneca LP; 2013.

  41. Taguchi M, Nozawa T, Mizumaki K, Inoue H, Tahara K, Takesono C, et al. Nonlinear mixed effects model analysis of the pharmacokinetics of metoprolol in routinely treated Japanese patients. Biol Pharm Bull. 2004;27(10):1642–8.

    CAS  PubMed  Google Scholar 

  42. White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among ACE inhibitors. Pharmacotherapy. 1998;18(3):588–99.

    CAS  PubMed  Google Scholar 

  43. Drug facts and comparisons. 2012 ed. St. Louis: Wolters Kluwer Health; 2012.

  44. Heel RC, Brogden RN, Speight TM, Avery GS. Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs. 1980;20(6):409–52.

    CAS  PubMed  Google Scholar 

  45. Nishida M, Matsuo H, Sano H, Obata H, Yasuda H. Effect of captopril on congestive heart failure. Jpn Circ J. 1990;54(12):1497–502.

    CAS  PubMed  Google Scholar 

  46. Williams PE, Brown AN, Rajaguru S, Francis RJ, Walters GE, McEwen J, et al. The pharmacokinetics and bioavailability of cilazapril in normal man. Br J Clin Pharmacol. 1989;27(Suppl 2):181S–8S.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Rosenthal E, Francis RJ, Brown AN, Rajaguru S, Williams PE, Steiner J, et al. A pharmacokinetic study of cilazapril in patients with congestive heart failure. Br J Clin Pharmacol. 1989;27(Suppl 2):267S–73S.

    PubMed Central  PubMed  Google Scholar 

  48. Massarella J, DeFeo T, Lin A, Limjuco R, Brown A. The pharmacokinetics and dose proportionality of cilazapril. Br J Clin Pharmacol. 1989;27(Suppl 2):199S–204S.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Wiseman MN, Elstob JE, Francis RJ, Brown AN, Rajaguru S, Steiner J, et al. Initial and steady state pharmacokinetics of cilazapril in congestive cardiac failure. J Pharm Pharmacol. 1991;43(6):406–10.

    CAS  PubMed  Google Scholar 

  50. Ulm EH, Hichens M, Gomez HJ, Till AE, Hand E, Vassil TC, et al. Enalapril maleate and a lysine analogue (MK-521): disposition in man. Br J Clin Pharmacol. 1982;14(3):357–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Mujais SK, Quintanilla A, Zahid M, Koch K, Shaw W, Gibson T. Renal handling of enalaprilat. Am J Kidney Dis. 1992;19(2):121–5.

    CAS  PubMed  Google Scholar 

  52. Schwartz JB, Taylor A, Abernethy D, O’Meara M, Farmer J, Young J, et al. Pharmacokinetics and pharmacodynamics of enalapril in patients with congestive heart failure and patients with hypertension. J Cardiovasc Pharmacol. 1985;7(4):767–76.

    CAS  PubMed  Google Scholar 

  53. Singhvi SM, Duchin KL, Morrison RA, Willard DA, Everett DW, Frantz M. Disposition of fosinopril sodium in healthy subjects. Br J Clin Pharmacol. 1988;25(1):9–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kostis JB, Garland WT, Delaney C, Norton J, Liao WC. Fosinopril: pharmacokinetics and pharmacodynamics in congestive heart failure. Clin Pharmacol Ther. 1995;58(6):660–5.

    CAS  PubMed  Google Scholar 

  55. ZESTRIL® (lisinopril) tablets [package insert]. Wilmington: AstraZeneca; 2013.

  56. Beermann B. Pharmacokinetics of lisinopril. Am J Med. 1988;85(3B):25–30.

    CAS  PubMed  Google Scholar 

  57. Gautam PC, Vargas E, Lye M. Pharmacokinetics of lisinopril (MK521) in healthy young and elderly subjects and in elderly patients with cardiac failure. J Pharm Pharmacol. 1987;39(11):929–31.

    CAS  PubMed  Google Scholar 

  58. Malhotra BK, Iyer RA, Soucek KM, Behr D, Liao WC, Mitroka JG, et al. Oral bioavailability and disposition of [14C]omapatrilat in healthy subjects. J Clin Pharmacol. 2001;41(8):833–41.

    CAS  PubMed  Google Scholar 

  59. Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000;356(9230):615–20.

    CAS  PubMed  Google Scholar 

  60. Kostis JB, Klapholz M, Delaney C, Vesterqvist O, Cohen M, Manning JA Jr, et al. Pharmacodynamics and pharmacokinetics of omapatrilat in heart failure. J Clin Pharmacol. 2001;41(12):1280–90.

    CAS  PubMed  Google Scholar 

  61. Devissaguet JP, Ammoury N, Devissaguet M, Perret L. Pharmacokinetics of perindopril and its metabolites in healthy volunteers. Fundam Clin Pharmacol. 1990;4(2):175–89.

    CAS  PubMed  Google Scholar 

  62. ACEON® (perindopril erbumine) tablets [package insert]. North Chicago: Abbott Laboratories; 2011.

  63. Lecocq B, Funck-Brentano C, Lecocq V, Ferry A, Gardin ME, Devissaguet M, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin-converting enzyme inhibition in serum. Clin Pharmacol Ther. 1990;47(3):397–402.

    CAS  PubMed  Google Scholar 

  64. Bellissant E, Giudicelli JF. Pharmacokinetic-pharmacodynamic model for perindoprilat regional haemodynamic effects in healthy volunteers and in congestive heart failure patients. Br J Clin Pharmacol. 2001;52(1):25–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Verpooten GA, Genissel PM, Thomas JR, De Broe ME. Single dose pharmacokinetics of perindopril and its metabolites in hypertensive patients with various degrees of renal insufficiency. Br J Clin Pharmacol. 1991;32(2):187–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Breslin E, Posvar E, Neub M, Trenk D, Jahnchen E. A pharmacodynamic and pharmacokinetic comparison of intravenous quinaprilat and oral quinapril. J Clin Pharmacol. 1996;36(5):414–21.

    CAS  PubMed  Google Scholar 

  67. Squire IB, Macfadyen RJ, Lees KR, Hillis WS, Reid JL. Haemodynamic response and pharmacokinetics after the first dose of quinapril in patients with congestive heart failure. Br J Clin Pharmacol. 1994;38(2):117–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Begg EJ, Robson RA, Ikram H, Richards AM, Bammert-Adams JA, Olson SC, et al. The pharmacokinetics of quinapril and quinaprilat in patients with congestive heart failure. Br J Clin Pharmacol. 1994;37(3):302–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Eckert HG, Badian MJ, Gantz D, Kellner HM, Volz M. Pharmacokinetics and biotransformation of 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S, 5S)-2-azabicyclo [3.3.0]octane-3-carboxylic acid (Hoe 498) in rat, dog and man. Arzneimittelforschung. 1984;34(10B):1435–47.

    CAS  PubMed  Google Scholar 

  70. ALTACE® (ramipril) cupsules [package insert]. Bristol: King Pharmaceuticals, Inc.; 2013.

  71. Heintz B, Verho M, Brockmeier D, Luckel G, Maigatter S, Sieberth HG, et al. Multiple-dose pharmacokinetics of ramipril in patients with chronic congestive heart failure. J Cardiovasc Pharmacol. 1993;22(Suppl 9):S36–42.

    PubMed  Google Scholar 

  72. Verho M, Luck C, Stelter WJ, Rangoonwala B, Bender N. Pharmacokinetics, metabolism and biliary and urinary excretion of oral ramipril in man. Curr Med Res Opin. 1995;13(5):264–73.

    CAS  PubMed  Google Scholar 

  73. Kondo K, Ohashi K, Saruta T, Shimura M, Toyodera K. Tolerability, pharmacodynamics and -kinetics of Hoe 498 after multiple administration of 5 mg for 15 days in healthy male subjects. Jpn Pharmacol Ther. 1986;14(2):803–23.

    Google Scholar 

  74. Taylor AA, Siragy H, Nesbitt S. Angiotensin receptor blockers: pharmacology, efficacy, and safety. J Clin Hypertens. 2011;13(9):677–86.

    CAS  Google Scholar 

  75. Sica DA, Gehr TW, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44(8):797–814.

    CAS  PubMed  Google Scholar 

  76. Marino MR, Vachharajani NN. Pharmacokinetics of irbesartan are not altered in special populations. J Cardiovasc Pharmacol. 2002;40(1):112–22.

    CAS  PubMed  Google Scholar 

  77. Gleiter CH, Morike KE. Clinical pharmacokinetics of candesartan. Clin Pharmacokinet. 2002;41(1):7–17.

    CAS  PubMed  Google Scholar 

  78. DIOVAN® (valsartan) tablet [package insert]. East Hanover: Novartis Pharmaceuticals Corp.; 2012.

  79. Aoi W. Pharmacokinetics study of angiotensin II receptor antagonist (TCV-116) in elderly patients in hypertension [in Japanese]. Rinsho Iyaku. 1996;12(11):2429–41.

    Google Scholar 

  80. Anpo Y, Mori S, Yokoi H, Takeda H, Nakano H, Watanabe Y. Pharmacokinetics of candesartan cilexetil (TCV-116) in patients with chronic heart failure. J N Remedies Clin. 1996;45(9):1662–8.

    Google Scholar 

  81. Buter H, Navis GY, Woittiez AJ, de Zeeuw D, de Jong PE. Pharmacokinetics and pharmacodynamics of candesartan cilexetil in patients with normal to severely impaired renal function. Eur J Clin Pharmacol. 1999;54(12):953–8.

    CAS  PubMed  Google Scholar 

  82. Vachharajani NN, Shyu WC, Chando TJ, Everett DW, Greene DS, Barbhaiya RH. Oral bioavailability and disposition characteristics of irbesartan, an angiotensin antagonist, in healthy volunteers. J Clin Pharmacol. 1998;38(8):702–7.

    CAS  PubMed  Google Scholar 

  83. Kostis JB, Vachharajani NN, Hadjilambris OW, Kollia GD, Palmisano M, Marino MR. The pharmacokinetics and pharmacodynamics of irbesartan in heart failure. J Clin Pharmacol. 2001;41(9):935–42.

    CAS  PubMed  Google Scholar 

  84. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58(6):641–9.

    CAS  PubMed  Google Scholar 

  85. Ohtawa M, Takayama F, Saitoh K, Yoshinaga T, Nakashima M. Pharmacokinetics and biochemical efficacy after single and multiple oral administration of losartan, an orally active nonpeptide angiotensin II receptor antagonist, in humans. Br J Clin Pharmacol. 1993;35(3):290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lo MW, Toh J, Emmert SE, Ritter MA, Furtek CI, Lu H, et al. Pharmacokinetics of intravenous and oral losartan in patients with heart failure. J Clin Pharmacol. 1998;38(6):525–32.

    CAS  PubMed  Google Scholar 

  87. Brookman LJ, Rolan PE, Benjamin IS, Palmer KR, Wyld PJ, Lloyd P, et al. Pharmacokinetics of valsartan in patients with liver disease. Clin Pharmacol Ther. 1997;62(3):272–8.

    CAS  PubMed  Google Scholar 

  88. Prasad PP, Yeh CM, Gurrieri P, Glazer R, McLeod J. Pharmacokinetics of multiple doses of valsartan in patients with heart failure. J Cardiovasc Pharmacol. 2002;40(5):801–7.

    CAS  PubMed  Google Scholar 

  89. Cyong J-C, Uebaba K. Phase I study of angiotensin II receptor antagonist, CGP 48933 (valsartan)—multiple administration study. Rinsho Iyaku. 1998;14(10):1727–43.

    Google Scholar 

  90. Thireau J, Pasquie JL, Martel E, Le Guennec JY, Richard S. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther. 2011;132(2):125–45.

    CAS  PubMed  Google Scholar 

  91. Harron DW, Brogden RN, Faulds D, Fitton A. Cibenzoline: a review of its pharmacological properties and therapeutic potential in arrhythmias. Drugs. 1992;43(5):734–59.

    CAS  PubMed  Google Scholar 

  92. Canal M, Flouvat B, Tremblay D, Dufour A. Pharmacokinetics in man of a new antiarrhythmic drug, cibenzoline. Eur J Clin Pharmacol. 1983;24(4):509–15.

    CAS  PubMed  Google Scholar 

  93. Brazzell RK, Rees MM, Khoo KC, Szuna AJ, Sandor D, Hannigan J. Age and cibenzoline disposition. Clin Pharmacol Ther. 1984;36(5):613–9.

    CAS  PubMed  Google Scholar 

  94. Massarella JW, Silvestri T, DeGrazia F, Miwa B, Keefe D. Effect of congestive heart failure on the pharmacokinetics of cibenzoline. J Clin Pharmacol. 1987;27(3):187–92.

    CAS  PubMed  Google Scholar 

  95. Goodman LS, Limbird LE, Milinoff PB, Ruddon RW, Gilman AG. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill Professional; 1996.

    Google Scholar 

  96. Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. Br J Clin Pharmacol. 1998;46(4):307–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Franciosa JA, Wilen M, Weeks CE, Tanenbaum R, Kvam DC, Miller AM. Pharmacokinetics and hemodynamic effects of flecainide in patients with chronic low output heart failure [abstract]. J Am Coll Cardiol. 1983;1:669.

    Google Scholar 

  98. Cavalli A, Maggioni AP, Marchi S, Volpi A, Latini R. Flecainide half-life prolongation in 2 patients with congestive heart failure and complex ventricular arrhythmias. Clin Pharmacokinet. 1988;14(3):187–8.

    CAS  PubMed  Google Scholar 

  99. Nitsch J, Neyses L, Kohler U, Luderitz B. Elevated plasma flecainide concentrations in heart failure [in German]. Dtsch Med Wochenschr. 1987;112(44):1698–700.

    CAS  PubMed  Google Scholar 

  100. Labbe L, Turgeon J. Clinical pharmacokinetics of mexiletine. Clin Pharmacokinet. 1999;37(5):361–84.

    CAS  PubMed  Google Scholar 

  101. MEXITIL® (mexiletine hydrochloride) capsule [package insert]. Ridgefield: Boehringer Ingelheim; 2003.

  102. Vozeh S, Katz G, Steiner V, Follath F. Population pharmacokinetic parameters in patients treated with oral mexiletine. Eur J Clin Pharmacol. 1982;23(5):445–51.

    CAS  PubMed  Google Scholar 

  103. Kobayashi M, Fukumoto K, Ueno K. Effect of congestive heart failure on mexiletine pharmacokinetics in a Japanese population. Biol Pharm Bull. 2006;29(11):2267–9.

    CAS  PubMed  Google Scholar 

  104. Plosker GL. Pilsicainide. Drugs. 2010;70(4):455–67.

    CAS  PubMed  Google Scholar 

  105. Nakajima M, Kanamaru M. Phase I study of pilsicainide hydrochloride (SUN1165) injection [in Japanese]. Rinsho Iyaku. 1998;14(1):47–61.

    Google Scholar 

  106. Takabatake T, Ohta H, Yamamoto Y, Ishida Y, Hara H, Ushiogi Y, et al. Pharmacokinetics of SUN 1165, a new antiarrhythmic agent, in renal dysfunction. Eur J Clin Pharmacol. 1991;40(4):411–4.

    CAS  PubMed  Google Scholar 

  107. Yokota M, Miyahara T, Enomoto N, Inagaki H, Goto J, Hayashi H, et al. Pharmacokinetics and pharmacodynamics of SUN 1165, a novel antiarrhythmic agent, after administration of a single oral dose. Therapeutic Res. 1989;10(5):2135–47.

    Google Scholar 

  108. Edgar B, Regardh CG, Johnsson G, Johansson L, Lundborg P, Lofberg I, et al. Felodipine kinetics in healthy men. Clin Pharmacol Ther. 1985;38(2):205–11.

    CAS  PubMed  Google Scholar 

  109. Edgar B, Regardh CG, Lundborg P, Romare S, Nyberg G, Ronn O. Pharmacokinetic and pharmacodynamic studies of felodipine in healthy subjects after various single, oral and intravenous doses. Biopharm Drug Dispos. 1987;8(3):235–48.

    CAS  PubMed  Google Scholar 

  110. Dunselman PH, Edgar B, Scaf AH, Kuntze CE, Wesseling H. Pharmacokinetics of felodipine after intravenous and chronic oral administration in patients with congestive heart failure. Br J Clin Pharmacol. 1989;28(1):45–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. PROCARDIA® (nifedipine) capsules [package insert]. New York: Pfizer Laboratories Div Pfizer Inc.; 2013.

  112. Chen DG, Feng QP, Wang ZQ, Chen K. Nifedipine pharmacodynamics and pharmacokinetics in treatment of congestive heart failure. Chin Med J (Engl). 1990;103(12):1008–14.

    CAS  Google Scholar 

  113. Cohen AF, Kroon R, Schoemaker HC, Breimer DD, Van Vliet-Verbeek A, Brandenburg HC. The bioavailability of digoxin from three oral formulations measured by a specific h.p.l.c. assay. Br J Clin Pharmacol. 1993;35(2):136–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Doherty JE, Perkins WH, Mitchell GK. Tritiated digoxin studies in human subjects. Arch Intern Med. 1961;108:531–9.

    CAS  PubMed  Google Scholar 

  115. Ohnhaus EE, Vozeh S, Nuesch E. Absorption of digoxin in severe right heart failure. Eur J Clin Pharmacol. 1979;15(2):115–20.

    CAS  PubMed  Google Scholar 

  116. Applefeld MM, Adir J, Crouthamel WG, Roffman DS. Digoxin pharmacokinetics in congestive heart failure. J Clin Pharmacol. 1981;21(2):114–20.

    CAS  PubMed  Google Scholar 

  117. Yukawa M, Yukawa E, Suematsu F, Takiguchi T, Ikeda H, Aki H, et al. Determination of digoxin clearance in Japanese elderly patients for optimization of drug therapy: a population pharmacokinetics analysis using nonlinear mixed-effects modelling. Drugs Aging. 2011;28(10):831–41.

    CAS  PubMed  Google Scholar 

  118. Carlton LD, Patterson JH, Mattson CN, Schmith VD. The effects of epoprostenol on drug disposition. I: a pilot study of the pharmacokinetics of digoxin with and without epoprostenol in patients with congestive heart failure. J Clin Pharmacol. 1996;36(3):247–56.

    CAS  PubMed  Google Scholar 

  119. Wargo KA, Banta WM. A comprehensive review of the loop diuretics: should furosemide be first line? Ann Pharmacother. 2009;43(11):1836–47.

    CAS  PubMed  Google Scholar 

  120. Murray MD, Haag KM, Black PK, Hall SD, Brater DC. Variable furosemide absorption and poor predictability of response in elderly patients. Pharmacotherapy. 1997;17(1):98–106.

    CAS  PubMed  Google Scholar 

  121. Brater DC. Clinical pharmacology of loop diuretics in health and disease. Eur Heart J. 1992;13(Suppl G):10–4.

    PubMed  Google Scholar 

  122. Knauf H, Mutschler E. Clinical pharmacokinetics and pharmacodynamics of torasemide. Clin Pharmacokinet. 1998;34(1):1–24.

    CAS  PubMed  Google Scholar 

  123. Sica DA. Pharmacotherapy in congestive heart failure: drug absorption in the management of congestive heart failure: loop diuretics. Congest Heart Fail. 2003;9(5):287–92.

    CAS  PubMed  Google Scholar 

  124. Cook JA, Smith DE, Cornish LA, Tankanow RM, Nicklas JM, Hyneck ML. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with congestive heart failure. Clin Pharmacol Ther. 1988;44(5):487–500.

    CAS  PubMed  Google Scholar 

  125. Vasko MR, Cartwright DB, Knochel JP, Nixon JV, Brater DC. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102(3):314–8.

    CAS  PubMed  Google Scholar 

  126. Vargo DL, Kramer WG, Black PK, Smith WB, Serpas T, Brater DC. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin Pharmacol Ther. 1995;57(6):601–9.

    CAS  PubMed  Google Scholar 

  127. Barr WH, Smith HL, Karnes HT, Sica D, Vetticaden SJ, Prasad VK, et al. Torasemide dose-proportionality of pharmacokinetics and pharmacodynamics. Prog Pharmacol Clin Pharmacol. 1990;8(1):29–37.

    CAS  Google Scholar 

  128. Gottlieb SS, Khatta M, Wentworth D, Roffman D, Fisher ML, Kramer WG. The effects of diuresis on the pharmacokinetics of the loop diuretics furosemide and torsemide in patients with heart failure. Am J Med. 1998;104(6):533–8.

    CAS  PubMed  Google Scholar 

  129. Bleske BE, Welage LS, Kramer WG, Nicklas JM. Pharmacokinetics of torsemide in patients with decompensated and compensated congestive heart failure. J Clin Pharmacol. 1998;38(8):708–14.

    CAS  PubMed  Google Scholar 

  130. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    CAS  PubMed  Google Scholar 

  131. Cook CS, Berry LM, Bible RH, Hribar JD, Hajdu E, Liu NW. Pharmacokinetics and metabolism of [14C]eplerenone after oral administration to humans. Drug Metab Dispos. 2003;31(11):1448–55.

    CAS  PubMed  Google Scholar 

  132. Ravis WR, Reid S, Sica DA, Tolbert DS. Pharmacokinetics of eplerenone after single and multiple dosing in subjects with and without renal impairment. J Clin Pharmacol. 2005;45(7):810–21.

    CAS  PubMed  Google Scholar 

  133. INSPRA® (eplerenone) tablets [package insert]. New York: G.D. Searle LLC; 2013.

  134. SAMSCA® (tolvaptan) tablets [package insert]. Tokyo: Otsuka Pharmaceutical Co., Ltd; 2013.

  135. Van Wart SA, Shoaf SE, Mallikaarjun S, Mager DE. Population pharmacokinetics of tolvaptan in healthy subjects and patients with hyponatremia secondary to congestive heart failure or hepatic cirrhosis. Biopharm Drug Dispos. 2013;34(6):336–47.

    PubMed  Google Scholar 

  136. Yi S, Jeon H, Yoon SH, Cho JY, Shin SG, Jang IJ, et al. Pharmacokinetics and pharmacodynamics of oral tolvaptan administered in 15- to 60-mg single doses to healthy Korean men. J Cardiovasc Pharmacol. 2012;59(4):315–22.

    CAS  PubMed  Google Scholar 

  137. XARELTO® (rivaroxaban) tablets [package insert]. Titusville: Janssen Ortho, LLC; 2013.

  138. Kubitza D, Roth A, Becka M, Alatrach A, Halabi A, Hinrichsen H, et al. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2013;76(1):89–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Kubitza D, Becka M, Mueck W, Halabi A, Maatouk H, Klause N, et al. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2010;70(5):703–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Carter NJ, Plosker GL. Rivaroxaban: a review of its use in the prevention of stroke and systemic embolism in patients with atrial fibrillation. Drugs. 2013;73(7):715–39.

    CAS  PubMed  Google Scholar 

  141. Gheorghiade M, Thyssen A, Zolynas R, Nadar VK, Greenberg BH, Mehra M, et al. Pharmacokinetics and pharmacodynamics of rivaroxaban and its effect on biomarkers of hypercoagulability in patients with chronic heart failure. J Heart Lung Transplant. 2011;30(2):218–26.

    PubMed  Google Scholar 

  142. Poulsen HE, Loft S. Antipyrine as a model drug to study hepatic drug-metabolizing capacity. J Hepatol. 1988;6(3):374–82.

    CAS  PubMed  Google Scholar 

  143. Rissam HS, Nair CR, Anand IS, Madappa C, Wahi PL. Alteration of hepatic drug metabolism in female patients with congestive cardiac failure. Int J Clin Pharmacol Ther Toxicol. 1983;21(12):602–4.

    CAS  PubMed  Google Scholar 

  144. LUVOX CR® (fluvoxamine maleate) extended-release capsules [package insert]. Palo Alto: Jazz Pharmaceuticals, Inc.; 2012.

  145. Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet. 1994;27(3):175–90.

    CAS  PubMed  Google Scholar 

  146. Orlando R, De Martin S, Andrighetto L, Floreani M, Palatini P. Fluvoxamine pharmacokinetics in healthy elderly subjects and elderly patients with chronic heart failure. Br J Clin Pharmacol. 2010;69(3):279–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Shepherd AM, Ludden TM, McNay JL, Lin MS. Hydralazine kinetics after single and repeated oral doses. Clin Pharmacol Ther. 1980;28(6):804–11.

    CAS  PubMed  Google Scholar 

  148. Crawford MH, Ludden TM, Kennedy GT. Determinants of systemic availability of oral hydralazine in heart failure. Clin Pharmacol Ther. 1985;38(5):538–43.

    CAS  PubMed  Google Scholar 

  149. Hanson A, Johansson BW, Wernersson B, Wahlander LA. Pharmacokinetics of oral hydralazine in chronic heart failure. Eur J Clin Pharmacol. 1983;25(4):467–73.

    CAS  PubMed  Google Scholar 

  150. Heizmann P, Ziegler WH. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1981;31(12a):2220–3.

    CAS  PubMed  Google Scholar 

  151. MIDAZOLAM (midazolam hydrochloride) injection [package insert]. Schaumburg: APP Pharmaceuticals, LLC; 2012.

  152. Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth. 1999;82(6):900–3.

    CAS  PubMed  Google Scholar 

  153. Heizmann P, Eckert M, Ziegler WH. Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol. 1983;16(Suppl 1):43S–9S.

    PubMed Central  PubMed  Google Scholar 

  154. Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther. 2007;81(2):270–83.

    CAS  PubMed  Google Scholar 

  155. Patel IH, Soni PP, Fukuda EK, Smith DF, Leier CV, Boudoulas H. The pharmacokinetics of midazolam in patients with congestive heart failure. Br J Clin Pharmacol. 1990;29(5):565–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Weinberger M, Hendeles L, Bighley L. The relation of product formulation to absorption of oral theophylline. N Engl J Med. 1978;299(16):852–7.

    CAS  PubMed  Google Scholar 

  157. Grygiel JJ, Wing LM, Farkas J, Birkett DJ. Effects of allopurinol on theophylline metabolism and clearance. Clin Pharmacol Ther. 1979;26(5):660–7.

    CAS  PubMed  Google Scholar 

  158. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.

    PubMed Central  PubMed  Google Scholar 

  159. Cuzzolin L, Schinella M, Tellini U, Pezzoli L, Lippi U, Benoni G. The effect of sex and cardiac failure on the pharmacokinetics of a slow-release theophylline formulation in the elderly. Pharmacol Res. 1990;22(Suppl 1):137–8.

    PubMed  Google Scholar 

  160. Ueno K, Miyai K, Koyama M, Seki T, Kawaguchi Y, Horiuchi Y. Effect of congestive heart failure on theophylline disposition. Clin Pharm. 1990;9(12):936–7.

    CAS  PubMed  Google Scholar 

  161. Giudicelli JF, Richer C, Mattei A. Pharmacokinetics and biological effects of captopril and hydrochlorothiazide after acute and chronic administration either alone or in combination in hypertensive patients. Br J Clin Pharmacol. 1987;23(Suppl 1):51S–63S.

    PubMed Central  PubMed  Google Scholar 

  162. Miyagawa T, Shiyonoiri H, Takasaki I, Kobayashi K, Ishii M. The effect of captopril on pharmacokinetics of digoxin in patients with mild congestive heart failure. Rinsho Iyaku. 1990;6(10):2001–11.

    Google Scholar 

  163. Meredith PA, Elliott HL, Reid JL, Francis RJ. The pharmacokinetics and angiotensin converting enzyme inhibition dynamics of cilazapril in essential hypertension. Br J Clin Pharmacol. 1989;27(Suppl 2):263S–6S.

    PubMed Central  PubMed  Google Scholar 

  164. Johnston D, Duffin D. Pharmacokinetic profiles of single and repeat doses of lisinopril and enalapril in congestive heart failure. Am J Cardiol. 1992;70(10):151C–3C.

    CAS  PubMed  Google Scholar 

  165. Till AE, Dickstein K, Aarsland T, Gomez HJ, Gregg H, Hichens M. The pharmacokinetics of lisinopril in hospitalized patients with congestive heart failure. Br J Clin Pharmacol. 1989;27(2):199–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Shionoiri H, Minamisawa K, Ueda S, Abe Y, Ebina T, Sugimoto K, et al. Pharmacokinetics and antihypertensive effects of lisinopril in hypertensive patients with normal and impaired renal function. J Cardiovasc Pharmacol. 1990;16(4):594–600.

    CAS  PubMed  Google Scholar 

  167. Thuillez C, Richard C, Loueslati H, Auzepy P, Giudicelli JF. Systemic and regional hemodynamic effects of perindopril in congestive heart failure. J Cardiovasc Pharmacol. 1990;15(4):527–35.

    CAS  PubMed  Google Scholar 

  168. Kimata S. Acute hemodynamic effect of quinapril on chronic heart failure. Rinsho Iyaku. 1995;11(2):299–313.

    Google Scholar 

  169. Begg EJ, Robson RA, Bailey RR, Lynn KL, Frank GJ, Olson SC. The pharmacokinetics and pharmacodynamics of quinapril and quinaprilat in renal impairment. Br J Clin Pharmacol. 1990;30(2):213–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Schunkert H, Kindler J, Gassmann M, Lahn W, Irmisch R, Ritz E, et al. Pharmacokinetics of ramipril in hypertensive patients with renal insufficiency. Eur J Clin Pharmacol. 1989;37(3):249–56.

    CAS  PubMed  Google Scholar 

  171. Packer M, Lukas MA, Tenero DM, Baidoo CA, Greenberg BH. Pharmacokinetic profile of controlled-release carvedilol in patients with left ventricular dysfunction associated with chronic heart failure or after myocardial infarction. Am J Cardiol. 2006;98(7A):39L–45L.

    CAS  PubMed  Google Scholar 

  172. Othman AA, Tenero DM, Boyle DA, Eddington ND, Fossler MJ. Population pharmacokinetics of S(-)-carvedilol in healthy volunteers after administration of the immediate-release (IR) and the new controlled-release (CR) dosage forms of the racemate. AAPS J. 2007;9(2):E208–18.

    PubMed Central  PubMed  Google Scholar 

  173. Honda M, Nozawa T, Igarashi N, Inoue H, Arakawa R, Ogura Y, et al. Effect of CYP2D6*10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull. 2005;28(8):1476–9.

    CAS  PubMed  Google Scholar 

  174. Lima JJ, Binkley PF, Johnson J, Leier CV. Dose- and time-dependent binding and kinetics of pindolol in patients with congestive heart failure. J Clin Pharmacol. 1986;26(4):253–7.

    CAS  PubMed  Google Scholar 

  175. Gretzer I, Alvan G, Duner H, Garle M, Sjoqvist F. Beta-blocking effect and pharmacokinetics of pindolol in young and elderly hypertensive patients. Eur J Clin Pharmacol. 1986;31(4):415–8.

    CAS  PubMed  Google Scholar 

  176. Abo Y, Mori S, Yokoi H, Takeda H, Nakano H, Watanabe Y. Pharmacokinetics of candesartan cilexetil (TCV-116) in patients with chronic heart failure. J N Remedies Clin. 1996;45(9):1662–8.

    Google Scholar 

  177. Uchida S, Watanabe H, Nishio S, Hashimoto H, Yamazaki K, Hayashi H, et al. Altered pharmacokinetics and excessive hypotensive effect of candesartan in a patient with the CYP2C91/3 genotype. Clin Pharmacol Ther. 2003;74(5):505–8.

    CAS  PubMed  Google Scholar 

  178. Lima JJ, Haughey DB, Leier CV. Disopyramide pharmacokinetics and bioavailability following the simultaneous administration of disopyramide and 14C-disopyramide. J Pharmacokinet Biopharm. 1984;12(3):289–313.

    CAS  PubMed  Google Scholar 

  179. Kessler KM, Lowenthal DT, Warner H, Gibson T, Briggs W, Reidenberg MM. Quinidine elimination in patients with congestive heart failure or poor renal function. N Engl J Med. 1974;290(13):706–9.

    CAS  PubMed  Google Scholar 

  180. Braun J, Kollert JR, Becker JU. Pharmacokinetics of flecainide in patients with mild and moderate renal failure compared with patients with normal renal function. Eur J Clin Pharmacol. 1987;31(6):711–4.

    CAS  PubMed  Google Scholar 

  181. Mohiuddin SM, Esterbrooks D, Hilleman DE, Aronow WS, Patterson AJ, Sketch MH, et al. Tocainide kinetics in congestive heart failure. Clin Pharmacol Ther. 1983;34(5):596–603.

    CAS  PubMed  Google Scholar 

  182. Trovato GM, Di Marco V, Ginardi V. Relationship between (beta)-methyl-digoxin pharmacokinetic and degree of renal impairment. Curr Ther Res Clin Exp. 1983;33(1):158–64.

    Google Scholar 

  183. Rietbrock N, Guggenmos J, Kuhlmann J, Hess U. Bioavailability and pharmacokinetics of beta-methyldigoxin after multiple oral and intravenous doses. Eur J Clin Pharmacol. 1976;09(5–6):373–9.

    CAS  PubMed  Google Scholar 

  184. Naafs MA, van der Hoek C, van Duin S, Koorevaar G, Schopman W, Silberbusch J. Decreased renal clearance of digoxin in chronic congestive heart failure. Eur J Clin Pharmacol. 1985;28(3):249–52.

    CAS  PubMed  Google Scholar 

  185. Finch MB, Johnston GD, Kelly JG, McDevitt DG. Pharmacokinetics of digoxin alone and in the presence of indomethacin therapy. Br J Clin Pharmacol. 1984;17(3):353–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Yukawa E, Suematu F, Yukawa M, Minemoto M, Ohdo S, Higuchi S, et al. Population pharmacokinetics of digoxin in Japanese patients: a 2-compartment pharmacokinetic model. Clin Pharmacokinet. 2001;40(10):773–81.

    CAS  PubMed  Google Scholar 

  187. Yukawa E, Honda T, Ohdo S, Higuchi S, Aoyama T. Population-based investigation of relative clearance of digoxin in Japanese patients by multiple trough screen analysis: an update. J Clin Pharmacol. 1997;37(2):92–100.

    CAS  PubMed  Google Scholar 

  188. Suematsu F, Yukawa E, Yukawa M, Minemoto M, Ohdo S, Higuchi S, et al. Pharmacoepidemiologic detection of calcium channel blocker-induced change on digoxin clearance using multiple trough screen analysis. Biopharm Drug Dispos. 2002;23(5):173–81.

    CAS  PubMed  Google Scholar 

  189. EL Desoky ES, Nagaraja NV, Derendorf H. Population pharmacokinetics of digoxin in Egyptian pediatric patients: impact of one data point utilization. Am J Ther. 2002;9(6):492–8.

  190. Zhou XD, Gao Y, Guan Z, Li ZD, Li J. Population pharmacokinetic model of digoxin in older Chinese patients and its application in clinical practice. Acta Pharmacol Sin. 2010;31(6):753–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Yukawa M, Yukawa E, Suematsu F, Takiguchi T, Ikeda H, Aki H, et al. Population pharmacokinetic investigation of digoxin in Japanese infants and young children. J Clin Pharmacol. 2011;51(6):857–63.

    CAS  PubMed  Google Scholar 

  192. Suematsu F, Yukawa E, Minemoto M, Yukawa M, Ohdo S, Higuchi S, et al. Population pharmacokinetic analysis of digoxin in Japanese infants with heart failure. Jpn J Pharm Health Care Sci. 2001;27(5):426–31.

    Google Scholar 

  193. Machida M, Komatsu T, Fujimoto T, Takechi S, Nomura A. The effect of carvedilol on plasma digoxin concentration in patients with chronic heart failure. Jpn J Ther Drug Monit. 2007;24(4):155–61.

    Google Scholar 

  194. Yukawa M, Yukawa E, Suematsu F, Takiguchi T, Ikeda H, Aki H, et al. Comparison of digoxin pharmacokinetics of patients givena dose of one 0.125 mg tablet or a half of 0.25 mg tablet. Jpn J Ther Drug Monit. 2010;27(2):78–84.

    Google Scholar 

  195. Preechagoon Y, Somsaard P, Petcharattana S. Population pharmacokinetics of digoxin in Thai pediatric patients. J Med Assoc Thai. 2009;92(10):1324–35.

    PubMed  Google Scholar 

  196. Landahl S, Edgar B, Gabrielsson M, Larsson M, Lernfelt B, Lundborg P, et al. Pharmacokinetics and blood pressure effects of felodipine in elderly hypertensive patients. A comparison with young healthy subjects. Clin Pharmacokinet. 1988;14(6):374–83.

    CAS  PubMed  Google Scholar 

  197. Rehnqvist N, Billing E, Moberg L, Lundman T, Olsson G. Pharmacokinetics of felodipine and effect on digoxin plasma levels in patients with heart failure. Drugs. 1987;34(Suppl 3):33–42.

    PubMed  Google Scholar 

  198. Lesne M. Comparison of the pharmacokinetics and pharmacodynamics of torasemide and furosemide in healthy volunteers. Arzneimittelforschung. 1988;38(1A):160–3.

    CAS  PubMed  Google Scholar 

  199. Chaturvedi PR, O’Donnell JP, Nicholas JM, Shoenthal DR, Waters DH, Gwilt PR. Steady state absorption kinetics and pharmacodynamics of furosemide in congestive heart failure. Int J Clin Pharmacol Ther Toxicol. 1987;25(3):123–8.

    CAS  PubMed  Google Scholar 

  200. Carlton LD, Patterson JH, Mattson CN, Schmith VD. The effects of epoprostenol on drug disposition. II: A pilot study of the pharmacokinetics of furosemide with and without epoprostenol in patients with congestive heart failure. J Clin Pharmacol. 1996;36(3):257–64.

    CAS  PubMed  Google Scholar 

  201. Muller FO, Middle MV, Schall R, Terblanche J, Hundt HK, Groenewoud G. An evaluation of the interaction of meloxicam with frusemide in patients with compensated chronic cardiac failure. Br J Clin Pharmacol. 1997;44(4):393–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Wilson H, Rocci ML Jr, Weber KT, Andrews V, Likoff MJ. Pharmacokinetics and hemodynamics of amrinone in patients with chronic cardiac failure of diverse etiology. Res Commun Chem Pathol Pharmacol. 1987;56(1):3–19.

    CAS  PubMed  Google Scholar 

  203. Park GB, Kershner RP, Angellotti J, Williams RL, Benet LZ, Edelson J. Oral bioavailability and intravenous pharmacokinetics of amrinone in humans. J Pharm Sci. 1983;72(7):817–9.

    CAS  PubMed  Google Scholar 

  204. Ruder MA, Lebsack C, Winkle RA, Mead RH, Smith N, Kates RE. Disposition kinetics of orally administered enoximone in patients with moderate to severe heart failure. J Clin Pharmacol. 1991;31(8):702–8.

    CAS  PubMed  Google Scholar 

  205. Lima JJ, Leier CV, Holtz L, Sterechele J, Shields BJ, MacKichan JJ. Oral enoximone pharmacokinetics in patients with congestive heart failure. J Clin Pharmacol. 1987;27(9):654–60.

    CAS  PubMed  Google Scholar 

  206. Edelson J, Stroshane R, Benziger DP, Cody R, Benotti J, Hood WB, Jr., et al. Pharmacokinetics of the bipyridines amrinone and milrinone. Circulation. 1986;73(3 Pt 2):III145–52.

  207. Seino Y, Takano T, Hayakawa H, Kanmatsuse K, Saitoh S, Saitoh T, et al. Hemodynamic effects and pharmacokinetics of oral milrinone for short-term support in acute heart failure. Cardiology. 1995;86(1):34–40.

    CAS  PubMed  Google Scholar 

  208. Chu KM, Shieh SM, Hu OY. Pharmacokinetics and pharmacodynamics of enantiomers of pimobendan in patients with dilated cardiomyopathy and congestive heart failure after single and repeated oral dosing. Clin Pharmacol Ther. 1995;57(6):610–21.

    CAS  PubMed  Google Scholar 

  209. Chu KM, Shieh SM, Hu OY. Plasma and red blood cell pharmacokinetics of pimobendan enantiomers in healthy Chinese. Eur J Clin Pharmacol. 1995;47(6):537–42.

    CAS  PubMed  Google Scholar 

  210. Beermann B, Groschinsky-Grind M. Pharmacokinetics of hydrochlorothiazide in patients with congestive heart failure. Br J Clin Pharmacol. 1979;7(6):579–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Niemeyer C, Hasenfuss G, Wais U, Knauf H, Schafer-Korting M, Mutschler E. Pharmacokinetics of hydrochlorothiazide in relation to renal function. Eur J Clin Pharmacol. 1983;24(5):661–5.

    CAS  PubMed  Google Scholar 

  212. Tilstone WJ, Dargie H, Dargie EN, Morgan HG, Kennedy AC. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clin Pharmacol Ther. 1974;16(2):322–9.

    CAS  PubMed  Google Scholar 

  213. Sakai M, Ohkawa S, Kaku T, Kuboki K, Chida K, Imai T. Pharmacokinetics of flosequinan in elderly patients with chronic congestive heart failure. Eur J Clin Pharmacol. 1993;44(4):387–9.

    CAS  PubMed  Google Scholar 

  214. Hinson JL, Hind ID, Weidler DJ. Pharmacokinetics, safety, and tolerability of flosequinan in patients with hepatic dysfunction. J Pharm Sci. 1994;83(3):382–5.

    CAS  PubMed  Google Scholar 

  215. Nicholls DP, Droogan A, Carson CA, Taylor IC, Passmore AP, Johnston GD, et al. Pharmacokinetics of flosequinan in patients with heart failure. Eur J Clin Pharmacol. 1996;50(4):289–91.

    CAS  PubMed  Google Scholar 

  216. Shen DD, Hosler JP, Schroder RL, Azarnoff DL. Pharmacokinetics of hydralazine and its acid-labile hydrazone metabolites in relation to acetylator phenotype. J Pharmacokinet Biopharm. 1980;8(1):53–68.

    CAS  PubMed  Google Scholar 

  217. Huber T, Grosse-Heitmeyer W, Rietbrock S, Harder S. Pharmacokinetics and pharmacodynamics of molsidomine in patients with liver dysfunction due to congestive heart failure. Int J Clin Pharmacol Ther Toxicol. 1992;30(11):491–2.

    CAS  PubMed  Google Scholar 

  218. Spreux-Varoquaux O, Doll J, Dutot C, Grandjean N, Cordonnier P, Pays M, et al. Pharmacokinetics of molsidomine and its active metabolite, linsidomine, in patients with liver cirrhosis. Br J Clin Pharmacol. 1991;32(3):399–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Tice FD, Jungbluth GL, Binkley PF, MacKichan JJ, Mohrland JS, Wolf DL, et al. Clinical pharmacology of nicorandil in patients with congestive heart failure. Clin Pharmacol Ther. 1992;52(5):496–503.

    CAS  PubMed  Google Scholar 

  220. Molinaro M, Villa G, Regazzi MB, Salvadeo A, Segagni S, Rondanelli R, et al. Pharmacokinetics of nicorandil in patients with normal and impaired renal function. Eur J Clin Pharmacol. 1992;42(2):203–7.

    CAS  PubMed  Google Scholar 

  221. Itoh H, Taniguchi K, Tsujibayashi T, Koike A, Sato Y, Nakamura S. Hemodynamic effects and pharmacokinetics of long-term therapy with ibopamine in patients with chronic heart failure. Cardiology. 1992;80(5–6):356–66.

    CAS  PubMed  Google Scholar 

  222. Azzollini F, Catto G, Iacuitti G, Pelosi G, Picca M, Pocchiari F, et al. Ibopamine kinetics after a single oral dose in patients with congestive heart failure. Int J Clin Pharmacol Ther Toxicol. 1988;26(2):105–12.

    CAS  PubMed  Google Scholar 

  223. Azzollini F, De Caro L, Longo A, Pelosi G, Rolandi E, Ventresca GP, et al. Ibopamine kinetics after single and multiple dosing in patients with congestive heart failure. Int J Clin Pharmacol Ther Toxicol. 1988;26(11):544–51.

    CAS  PubMed  Google Scholar 

  224. Silke B, Lakhani ZM, Taylor SH. Pharmacokinetic and pharmacodynamic studies with prazosin in chronic heart failure. J Cardiovasc Pharmacol. 1981;3(2):329–35.

    CAS  PubMed  Google Scholar 

  225. Andros E, Detmar-Hanna D, Suteparuk S, Gal J, Gerber JG. The effect of aging on the pharmacokinetics and pharmacodynamics of prazosin. Eur J Clin Pharmacol. 1996;50(1–2):41–6.

    CAS  PubMed  Google Scholar 

  226. Dahlstrom U, Graffner C, Jonsson U, Hoffmann KJ, Karlsson E, Lagerstrom PO. Pharmacokinetics of prenalterol after single and multiple administration of controlled release tablets to patients with congestive heart failure. Eur J Clin Pharmacol. 1983;24(4):495–502.

    CAS  PubMed  Google Scholar 

  227. Clarke AF, Jack DB, Kendall MJ, Smith SR. The pharmacokinetics of oral and intravenous prenalterol in young, healthy volunteers. Biopharm Drug Dispos. 1986;7(1):47–52.

    CAS  PubMed  Google Scholar 

  228. Scott AK, Webster J, Petrie JC, Bastain W. The effect of age and cardiac failure on xamoterol pharmacokinetics. Br J Clin Pharmacol. 1988;25(2):165–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors used no specific sources of funding in the preparation of the present review article. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Ogawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, R., Stachnik, J.M. & Echizen, H. Clinical Pharmacokinetics of Drugs in Patients with Heart Failure: An Update (Part 2, Drugs Administered Orally). Clin Pharmacokinet 53, 1083–1114 (2014). https://doi.org/10.1007/s40262-014-0189-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0189-3

Keywords

Navigation