Skip to main content
Log in

Prediction of Drug Disposition in Diabetic Patients by Means of a Physiologically Based Pharmacokinetic Model

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Accumulating evidence has shown that diabetes mellitus may affect the pharmacokinetics of some drugs, leading to alteration of pharmacodynamics and/or toxic effects. The aim of this study was to develop a novel physiologically based pharmacokinetic (PBPK) model for predicting drug pharmacokinetics in patients with type 2 diabetes mellitus quantitatively.

Methods

Contributions of diabetes-induced alteration of physiological parameters including gastric emptying rates, intestinal transit time, drug metabolism in liver and kidney functions were incorporated into the model. Plasma concentration–time profiles and pharmacokinetic parameters of seven drugs (antipyrine, nisoldipine, repaglinide, glibenclamide, glimepiride, chlorzoxazone, and metformin) in non-diabetic and diabetic patients were predicted using the developed model. The PBPK model coupled with a Monte-Carlo simulation was also used to predict the means and variability of pharmacokinetic parameters.

Results

The predicted area under the plasma concentration–time curve (AUC) and maximum (peak) concentration (C max) were reasonably consistent (<2-fold errors) with the reported values. Sensitivity analysis showed that gut transit time, hepatic enzyme activity, and renal function affected the pharmacokinetic characteristics of these drugs. Shortened gut transit time only decreased the AUC of controlled-released drugs and drugs with low absorption rates. Impairment of renal function markedly altered pharmacokinetics of drugs mainly eliminated via the kidneys.

Conclusion

All of these results indicate that the developed PBPK model can quantitatively predict pharmacokinetic alterations induced by diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481–99. doi:10.2165/11631900-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert RE, Cooper ME, Krum H. Drug administration in patients with diabetes mellitus: safety considerations. Drug Saf. 1998;18(6):441–55.

    Article  CAS  PubMed  Google Scholar 

  3. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49(2):71–87. doi:10.2165/11318100-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  4. Chen M, Nafziger AN, Drusano GL, Ma L, Bertino JS Jr. Comparative pharmacokinetics and pharmacodynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother. 2006;50(4):1222–7. doi:10.1128/AAC.50.4.1222-1227.2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. De Jonge ME, Mathot RA, Van Dam SM, Beijnen JH, Rodenhuis S. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother Pharmacol. 2002;50(3):251–5. doi:10.1007/s00280-002-0494-7.

    Article  PubMed  Google Scholar 

  6. Ziegler D, Schadewaldt P, Pour Mirza A, Piolot R, Schommartz B, Reinhardt M, et al. [13C] octanoic acid breath test for non-invasive assessment of gastric emptying in diabetic patients: validation and relationship to gastric symptoms and cardiovascular autonomic function. Diabetologia. 1996;39(7):823–30.

    Article  CAS  PubMed  Google Scholar 

  7. Kong MF, King P, Macdonald IA, Blackshaw PE, Horowitz M, Perkins AC, et al. Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus. Diabetologia. 1999;42(3):365–72. doi:10.1007/s001250051164.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care. 1996;19(5):468–71.

    Article  CAS  PubMed  Google Scholar 

  9. Frank JW, Saslow SB, Camilleri M, Thomforde GM, Dinneen S, Rizza RA. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology. 1995;109(3):755–65.

    Article  CAS  PubMed  Google Scholar 

  10. Horowitz M, Wishart JM, Jones KL, Hebbard GS. Gastric emptying in diabetes: an overview. Diabet Med. 1996;13(9 Suppl 5):S16–22.

    CAS  PubMed  Google Scholar 

  11. Matsumoto M, Yoshimura R, Akiho H, Higuchi N, Kobayashi K, Matsui N, et al. Gastric emptying in diabetic patients by the (13) C-octanoic acid breath test: role of insulin in gastric motility. J Gastroenterol. 2007;42(6):469–74. doi:10.1007/s00535-007-2031-2.

    Article  CAS  PubMed  Google Scholar 

  12. Iida M, Ikeda M, Kishimoto M, Tsujino T, Kaneto H, Matsuhisa M, et al. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol. 2000;15(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  13. Scarpello JH, Greaves M, Sladen GE. Small intestinal transit in diabetics. Br Med J. 1976;2(6046):1225–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dostalek M, Court MH, Yan B, Akhlaghi F. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. Br J Pharmacol. 2011;163(5):937–47. doi:10.1111/j.1476-5381.2011.01270.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dostalek M, Sam WJ, Paryani KR, Macwan JS, Gohh RY, Akhlaghi F. Diabetes mellitus reduces the clearance of atorvastatin lactone: results of a population pharmacokinetic analysis in renal transplant recipients and in vitro studies using human liver microsomes. Clin Pharmacokinet. 2012;51(9):591–606. doi:10.2165/11632690-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  16. Sasso FC, De Nicola L, Carbonara O, Nasti R, Minutolo R, Salvatore T, et al. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(3):498–503.

    Article  PubMed  Google Scholar 

  17. Huang SM, Temple R, Xiao S, Zhang L, Lesko LJ. When to conduct a renal impairment study during drug development: US Food and Drug Administration perspective. Clin Pharmacol Ther. 2009;86(5):475–9. doi:10.1038/clpt.2009.190.

    Article  CAS  PubMed  Google Scholar 

  18. Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35(11):1094–102.

    Article  CAS  PubMed  Google Scholar 

  19. Jones KL, Tonkin A, Horowitz M, Wishart JM, Carney BI, Guha S, et al. Rate of gastric emptying is a determinant of postprandial hypotension in non-insulin-dependent diabetes mellitus. Clin Sci (Lond). 1998;94(1):65–70.

    CAS  PubMed  Google Scholar 

  20. Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, et al. The evolving diabetes burden in the United States. Ann Intern Med. 2004;140(11):945–50.

    Article  PubMed  Google Scholar 

  21. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73. doi:10.1146/annurev-pharmtox-010510-100540.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67. doi:10.1038/clpt.2010.298.

    Article  CAS  PubMed  Google Scholar 

  23. Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13. doi:10.1124/dmd.112.050161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74(5):873–85. doi:10.1111/j.1365-2125.2012.04363.x.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Björkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704. doi:10.1111/j.1365-2125.2004.02225.x.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Björkman S, Wada DR, Berling BM, Benoni G. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci. 2001;90(9):1226–41. doi:10.1002/jps.1076.

    Article  PubMed  Google Scholar 

  27. Ghobadi C, Johnson TN, Aarabi M, Almond LM, Allabi AC, Rowland-Yeo K, et al. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin Pharmacokinet. 2011;50(12):809–22. doi:10.2165/11594420-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  28. Perdaems N, Blasco H, Vinson C, Chenel M, Whalley S, Cazade F, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58. doi:10.2165/11318130-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  29. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41–67 (S0169409X0100179X).

    Article  CAS  PubMed  Google Scholar 

  30. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24. doi:10.1208/s12248-009-9098-z.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304. doi:10.1016/j.ejps.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  32. Heinig R, Ahr G, Hayauchi Y, Kuhlmann J. Pharmacokinetics of the controlled-release nisoldipine coat-core tablet formulation. Int J Clin Pharmacol Ther. 1997;35(8):341–51.

    CAS  PubMed  Google Scholar 

  33. Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42. doi:10.1124/dmd.111.039248.

    Article  CAS  PubMed  Google Scholar 

  34. Triantafyllou K, Kalantzis C, Papadopoulos AA, Apostolopoulos P, Rokkas T, Kalantzis N, et al. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig Liver Dis. 2007;39(6):575–80. doi:10.1016/j.dld.2007.01.024.

    Article  CAS  PubMed  Google Scholar 

  35. Jung HK, Kim DY, Moon IH, Hong YS. Colonic transit time in diabetic patients–comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44(2):265–72.

    Article  PubMed  Google Scholar 

  36. Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, et al. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci. 2013;102(8):2819–36. doi:10.1002/jps.23613.

    Article  CAS  PubMed  Google Scholar 

  37. Li GF, Wang K, Chen R, Zhao HR, Yang J, Zheng QS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):1359–71. doi:10.1038/aps.2012.103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. Epub 2011 May 3. doi:10.1002/jps.22550

  39. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.

    Article  CAS  PubMed  Google Scholar 

  40. Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos. 1995;23(10):1008–21.

    CAS  PubMed  Google Scholar 

  41. Jones RD, Jones HM, Rowland M, Gibson CR, Yates JW, Chien JY, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: Comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. Epub 2011 Mar 30. doi:10.1002/jps.22553

  42. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. doi:10.1002/jps.20322.

    Article  CAS  PubMed  Google Scholar 

  43. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3. doi:10.1111/bcp.12234.

  44. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75 (JST.JSTAGE/dmpk/24.53).

    Article  CAS  PubMed  Google Scholar 

  45. Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20. doi:10.1007/s11095-006-9020-7.

    Article  CAS  PubMed  Google Scholar 

  46. Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol Pharm. 2012;9(3):492–504. doi:10.1021/mp200275j.

    Article  CAS  PubMed  Google Scholar 

  47. Shobha JC, Raghuram TC, Kumar AD, Krishnaswamy K. Antipyrine kinetics in undernourished diabetics. Eur J Clin Pharmacol. 1991;41(4):359–61.

    Article  CAS  PubMed  Google Scholar 

  48. Shou M, Hayashi M, Pan Y, Xu Y, Morrissey K, Xu L, et al. Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos. 2008;36(11):2355–70. doi:10.1124/dmd.108.020602.

    Article  CAS  PubMed  Google Scholar 

  49. Heinig R, Muschalek V, Ahr G. Determination of the enantiomers of nisoldipine in human plasma using high-performance liquid chromatography on a chiral stationary phase and gas chromatography with mass-selective detection. J Chromatogr B Biomed Appl. 1994;655(2):286–92.

    Article  CAS  PubMed  Google Scholar 

  50. Marques MP, Coelho EB, Dos Santos NA, Geleilete TJ, Lanchote VL. Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. Eur J Clin Pharmacol. 2002;58(9):607–14. doi:10.1007/s00228-002-0528-4.

    Article  CAS  PubMed  Google Scholar 

  51. Hatorp V, Huang WC, Strange P. Repaglinide pharmacokinetics in healthy young adult and elderly subjects. Clin Ther. 1999;21(4):702–10. doi:10.1016/S0149-2918(00)88321-6.

    Article  CAS  PubMed  Google Scholar 

  52. Schumacher S, Abbasi I, Weise D, Hatorp V, Sattler K, Sieber J, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol. 2001;57(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  53. Hatorp V, Huang WC, Strange P. Pharmacokinetic profiles of repaglinide in elderly subjects with type 2 diabetes. J Clin Endocrinol Metab. 1999;84(4):1475–8. doi:10.1210/jcem.84.4.5726.

    Article  CAS  PubMed  Google Scholar 

  54. Malerczyk V, Badian M, Korn A, Lehr KH, Waldhausl W. Dose linearity assessment of glimepiride (Amaryl) tablets in healthy volunteers. Drug Metabol Drug Interact. 1994;11(4):341–57.

    Article  CAS  PubMed  Google Scholar 

  55. Graefe-Mody U, Rose P, Ring A, Zander K, Iovino M, Woerle HJ. Assessment of the pharmacokinetic interaction between the novel DPP-4 inhibitor linagliptin and a sulfonylurea, glyburide, in healthy subjects. Drug Metab Pharmacokinet. 2011;26(2):123–9. doi:10.2133/dmpk.DMPK-10-RG-091.

    Article  CAS  PubMed  Google Scholar 

  56. Shukla UA, Chi EM, Lehr KH. Glimepiride pharmacokinetics in obese versus non-obese diabetic patients. Ann Pharmacother. 2004;38(1):30–5. doi:10.1345/aph.1C397.

    CAS  PubMed  Google Scholar 

  57. Badian M, Korn A, Lehr KH, Malerczyk V, Waldhausl W. Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol Drug Interact. 1994;11(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  58. Jonsson A, Chan JC, Rydberg T, Vaaler S, Hallengren B, Cockram CS, et al. Effects and pharmacokinetics of oral glibenclamide and glipizide in Caucasian and Chinese patients with type-2 diabetes. Eur J Clin Pharmacol. 2000;56(9–10):711–4.

    Article  CAS  PubMed  Google Scholar 

  59. Serra D, He YL, Bullock J, Riviere GJ, Balez S, Schwartz S, et al. Evaluation of pharmacokinetic and pharmacodynamic interaction between the dipeptidyl peptidase IV inhibitor vildagliptin, glyburide and pioglitazone in patients with Type 2 diabetes. Int J Clin Pharmacol Ther. 2008;46(7):349–64.

    Article  CAS  PubMed  Google Scholar 

  60. Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ. Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1. Pharmacogenetics. 1995;5(3):143–50.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 2003;55(1):77–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sambol NC, Chiang J, O’Conner M, Liu CY, Lin ET, Goodman AM, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol. 1996;36(11):1012–21.

    Article  CAS  PubMed  Google Scholar 

  63. Klatt S, Fromm MF, Konig J. Transporter-mediated drug-drug interactions with oral antidiabetic drugs. Pharmaceutics. 2011;3(4):680–705. doi:10.3390/pharmaceutics3040680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Liu H, Liu L, Li J, Mei D, Duan R, Hu N, et al. Combined contributions of impaired hepatic CYP2C11 and intestinal breast cancer resistance protein activities and expression to increased oral glibenclamide exposure in rats with streptozotocin-induced diabetes mellitus. Drug Metab Dispos. 2012;40(6):1104–12. doi:10.1124/dmd.111.043513.

    Article  PubMed  Google Scholar 

  65. Hudachek SF, Gustafson DL. Customized in silico population mimics actual population in docetaxel population pharmacokinetic analysis. J Pharm Sci. 2011;100(3):1156–66. doi:10.1002/jps.22322.

    Article  CAS  PubMed  Google Scholar 

  66. Nestorov I. Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicol Lett. 2001;120(1–3):411–20. doi:10.1016/S0378-4274(01)00273-9.

    Article  CAS  PubMed  Google Scholar 

  67. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  68. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  69. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56. doi:10.1002/jps.10005.

    Article  CAS  PubMed  Google Scholar 

  70. Varma MV, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide. Pharm Res. 2013;30(4):1188–99. doi:10.1007/s11095-012-0956-5.

    Article  CAS  PubMed  Google Scholar 

  71. Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sayama H, Komura H, Kogayu M. Application of hybrid approach based on empirical and physiological concept for predicting pharmacokinetics in humans–usefulness of exponent on prospective evaluation of predictability. Drug Metab Dispos. 2013;41(2):498–507. doi:10.1124/dmd.112.048819.

    Article  CAS  PubMed  Google Scholar 

  73. Greupink R, Schreurs M, Benne MS, Huisman MT, Russel FG. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions. Eur J Pharm Sci. 2013;49(5):819–28. doi:10.1016/j.ejps.2013.06.009.

    Article  CAS  PubMed  Google Scholar 

  74. Frick A, Moller H, Wirbitzki E. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm. 1998;46(3):305–11. doi:10.1016/S0939-6411(98)00041-1.

    Article  CAS  PubMed  Google Scholar 

  75. Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13(9):1336–42.

    Article  CAS  PubMed  Google Scholar 

  76. Rydberg T, Jonsson A, Karlsson MO, Melander A. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol. 1997;43(4):373–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S. doi:10.1177/0091270011415528.

    Article  CAS  PubMed  Google Scholar 

  78. Balant L. Clinical pharmacokinetics of sulphonylurea hypoglycaemic drugs. Clin Pharmacokinet. 1981;6(3):215–41.

    Article  CAS  PubMed  Google Scholar 

  79. Court MH, Von Moltke LL, Shader RI, Greenblatt DJ. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm Drug Dispos. 1997;18(3):213–26.

    Article  CAS  PubMed  Google Scholar 

  80. Lave T, Dupin S, Schmitt C, Chou RC, Jaeck D, Coassolo P. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J Pharm Sci. 1997;86(5):584–90. doi:10.1021/js960440h.

    Article  CAS  PubMed  Google Scholar 

  81. Rydberg T, Jonsson A, Melander A. Comparison of the kinetics of glyburide and its active metabolites in humans. J Clin Pharm Ther. 1995;20(5):283–95.

    Article  CAS  PubMed  Google Scholar 

  82. Kramer I, Dalhoff K, Clemmesen JO, Loft S, Poulsen HE. Comparison of chlorzoxazone one-sample methods to estimate CYP2E1 activity in humans. Eur J Clin Pharmacol. 2003;59(10):775–8. doi:10.1007/s00228-003-0695-y.

    Article  CAS  PubMed  Google Scholar 

  83. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58. doi:10.1124/dmd.110.032649.

    Article  CAS  PubMed  Google Scholar 

  84. Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59(6):613–23. doi:10.1016/S0009-9236(96)90001-6.

    Article  CAS  PubMed  Google Scholar 

  85. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.

    Article  CAS  PubMed  Google Scholar 

  86. Iwatsubo T, Suzuki H, Sugiyama Y. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data. J Pharmacol Exp Ther. 1997;283(2):462–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Youth Science Foundation of China (No. 81102503), National Science Foundation of China (No. 81373482), and the Fundamental Research Funds for the Central Universities (ZD2014YX0026, PT2014 YX 0057). All authors have no conflicts of interest to declare.

Authorship contribution

Participated in research design: Jia Li, Hai-fang Guo, and Xiaodong Liu.

Conducted experiments: Jia Li and Hai-fang Guo.

Performed data analysis: Jia Li, Hai-fang Guo, Zeyu Zhong, and Xiaodong Liu.

Wrote or contributed to the writing of the manuscript: Jia Li, Hai-fang Guo, Li Liu, Can Liu, and Xiaodong Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Liu or Xiao-dong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, Hf., Liu, C. et al. Prediction of Drug Disposition in Diabetic Patients by Means of a Physiologically Based Pharmacokinetic Model. Clin Pharmacokinet 54, 179–193 (2015). https://doi.org/10.1007/s40262-014-0192-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0192-8

Keywords

Navigation