Skip to main content
Log in

Immunohistochemical Localization of Arginase II and Other Enzymes of Arginine Metabolism in Rat Kidney and Liver

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoki, E. & Takeuchi, I.K. (1997) Immunohistochemical localization of arginine and citrulline in rat renal tissue. J. Histochem. Cytochem. 45, 875-81.

    Google Scholar 

  • Bettuzzi, S., Marinelli, M., Strocchi, P., Cavolani, D. & Corti, A. (1995) Different localization of spermidine/spermine N1-acetyltransferase and ornithine decarboxylase transcripts in the rat kidney. FEBS Lett. 377, 321-24.

    Google Scholar 

  • Blackshear, P. J., Manzella, J.M., Stumpo, D.J., Wen, L. Huang, J.K., Oyen, O. & Young, W. (1989) High level, cell-specific expression of ornithine decarboxylase transcripts in rat genitourinary tissues. Mol. Endocrinol. 3, 68-78.

    Google Scholar 

  • Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal. Biochem. 162, 156-9.

    Google Scholar 

  • Dhanakoti, S.N., Brosnan, M.E., Herzberg, G.R. & Brosnan, J.T. (1992) Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem. J. 282, 369-75.

    Google Scholar 

  • Dingemanse, M.A., De Jonge, W., De Boer, P., Mori, M., Lamers, W.H. & Moorman, A.F. (1996) Development of the ornithine cycle in rat liver: zonation of a metabolic pathway. Hepatology 24, 407-11.

    Google Scholar 

  • Gaasbeek, J.J., Lamers, W.H., Moorman, A.F., De Graaf, A., Los, J.A. & Charles, R. (1984) Immuno-histochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J. Histochem. Cytochem. 32, 557-64.

    Google Scholar 

  • Glass, R.D. & Knox, W.E. (1973) Arginase isozymes of rat mammary gland, liver, and other tissues. J. Biol. Chem. 248, 5785-9.

    Google Scholar 

  • Gotoh, T., Sonoki, T., Nagasaki, A., Terada, K., Takiguchi, M. & Mori, M. (1996) Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 395, 119-22.

    Google Scholar 

  • Grody, W.W., Kern, R.M., Klein, D., Dodson, A.E., Wissman, P.B., Barsky, S.H. & Cederbaum, S.D. (1993) Arginase deFIciency manifesting delayed clinical sequel and induction of a kidney arginase isozyme. Hum. Genet. 91, 1-5.

    Google Scholar 

  • Hattori, Y., Campbell, E.B. & Gross, S.S. (1994) Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J. Biol. Chem. 269, 9405-8.

    Google Scholar 

  • Hecker, M., Sessa, W.C., Harris, H.J., Anggard, E.E. & Vane, J.R. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc. Natl. Acad. Sci. USA 87, 8612-16.

    Google Scholar 

  • Herzfeld, A. & Raper, S.M. (1976) The heterogeneity of arginases in rat tissues. Biochem. J. 153, 469-78.

    Google Scholar 

  • Ikemoto, M., Tabata, M., Miyake, T., Kono, T., Mori, M., Totani, M. & Murachi, T. (1990) Expression of human liver arginase in Escherichia coli. Purification and properties of the product. Biochem. J. 270, 697- 703.

    Google Scholar 

  • Kanazawa, M., Terada, K., Kato, S. & Mori, M. (1997) HSDJ, a human homolog of DnaJ, is farnesylated and is involved in protein import into mitochondria. J. Biochem. 121, 890-5.

    Google Scholar 

  • Kasahara, M., Matsuzawa, T., Kokubo, M., Gushiken, Y., Tashiro, K., Koide, T., Watanabe, H. & Katunuma, N. (1986) Immunohistochemical localization of ornithine aminotransferase in normal rat tissues by Fab'-horseradish peroxidase conjugates. J. Histochem. Cytochem. 34, 1385-8.

    Google Scholar 

  • Kato, H., Oyamada, I., Mizutani-Funahashi, M. & Nakagawa, H. (1976) New radioisotopic assays of argininosuccinate synthetase and argininosuccinase. J. Biochem. 79, 945-53.

    Google Scholar 

  • Kaysen, G.A. & Strecker, H.J. (1973) Purification and properties of arginase of rat kidney. Biochem. J. 133, 779-88.

    Google Scholar 

  • Levillain, O., Hus, C.A., Morel, F. & Bankir, L. (1989) Production of urea from arginine in pars recta and collecting duct of the rat kidney. Renal Physiol. Biochem. 12, 302-12.

    Google Scholar 

  • Levillain, O., Hus, C.A., Morel, F. & Bankir, L. (1990) Localization of arginine synthesis along rat nephron. Am. J. Physiol. 259, 916-23.

    Google Scholar 

  • Matsuzawa, T., Kobayashi, T., Kazuhiro, T. & Kasahara, M. (1994) Changes in ornithine metabolic enzymes induced by dietary protein in small intestine and liver: intestine-liver relationship in ornithine supply to liver. J. Biochem. 116, 721-7.

    Google Scholar 

  • Mitchell, J.A., Hecker, M. & Vane, J.R. (1990) The generation of L-arginine in endothelial cells is linked to the release of endothelium-derived relaxing factor. Eur. J. Pharmacol. 176, 253-54.

    Google Scholar 

  • Moorman, A.F., Vermeulen, J.L., Charles, R. & Lamers, W.H. (1989) Localization of ammonia-metabolizing enzymes in human liver: ontogenesis of heterogeneity. Hepatology 9, 367-72.

    Google Scholar 

  • Moorman, A.F., De Boer, B.P., Evans, D., Charles, R. & Lamers, W.H. (1990) Expression patterns of mRNAs for alpha-fetoprotein and albumin in the developing rat: the ontogenesis of hepatocyte heterogeneity. Histochem. J. 22, 653-60.

    Google Scholar 

  • Mori, M., Miura, S., Tatibana, M. & Cohen, P.P. (1979) Cell-free synthesis and processing of a putative precursor for mitochondrial carbamyl phosphate synthetase I of rat liver. Proc. Natl. Acad. Sci. USA 76, 5071-5.

    Google Scholar 

  • Morris, S.J. (1992) Regulation of enzymes of urea and arginine synthesis. Annu. Rev. Nutr. 12, 81-101.

    Google Scholar 

  • Morris, S. J., Sweeney, W.J., Kepka, D.M., O'brien, W.E. & Avner, E.D. (1991) Localization of arginine biosynthetic enzymes in renal proximal tubules and abundance of mRNA during development. Pediatr. Res. 29, 151-4.

    Google Scholar 

  • Nagasaki, A., Gotoh, T., Takeya, M., Yu, Y., Takiguchi, M., Matsuzaki, H., Takatsuki, K. & Mori, M. (1996) Coinduction of nitric oxide synthase, argininosuccinate synthetase, and argininosuccinate lyase in lipopolysaccharide-treated rats. RNA blot, immunoblot, and immunohistochemical analyses. J. Biol. Chem. 271, 2658-62.

    Google Scholar 

  • Nebes, V.L. & Morris, S. J. (1988) Regulation of messenger ribonucleic acid levels for five urea cycle enzymes in cultured rat hepatocytes. Requirements for cyclic adenosine monophosphate, glucocorticoids, and on-going protein synthesis. Mol. Endocrinol. 2, 444-51.

    Google Scholar 

  • Nussler, A.K., Billiar, T.R., Liu, Z.Z. & Morris, S.J. (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J. Biol. Chem. 269, 1257-61.

    Google Scholar 

  • Ratner, S. & Murakami, M.K. (1980) A new radiochemical assay for argininosuccinase with purified [14C]argininosuccinate. Anal. Biochem. 106, 134-47.

    Google Scholar 

  • Saheki, T., Yagi, Y., Sase, M., Nakano, K. & Sato, E. (1983) Immunohistochemical localization of argininosuccinate synthetase in the liver of control and citrullinemic patients. Biomed. Res. 4, 235-8.

    Google Scholar 

  • Skrzypek-Osiecka, I., Robin, Y. & Porembska, Z. (1983) PuriFIcation of rat kidney arginases A1 and A4 and their subcellular distribution. Acta Biochim. Pol. 30, 83-92.

    Google Scholar 

  • Sonoki, T., Nagasaki, A., Gotoh, T., Takiguchi, M., Takeya, M., Matsuzaki, H. & Mori, M. (1997) Co-induction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. J. Biol. Chem. 272, 3689- 93.

    Google Scholar 

  • Spector, E.B., Jenkinson, C.P., Grigor, M.R., Kern, R.M. & Cederbaum, S.D. (1994) Subcellular location and differential antibody specificity of arginase in tissue culture and whole animals. Int. J. Dev. Neurosci. 12, 337-42.

    Google Scholar 

  • Takiguchi, M. & Mori, M. (1995) Transcriptional regulation of genes for ornithine cycle enzymes. Biochem. J. 312, 649-59.

    Google Scholar 

  • Wang, W.W., Jenkinson, C.P., Griscavage, J.M., Kern, R.M., Arabolos, N.S., Byrns, R.E., Cederbaum, S.D. & Ignarro, L.J. (1995) Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem. Biophys. Res. Commun. 210, 1009-16.

    Google Scholar 

  • Wu, G.Y. & Brosnan, J.T. (1992) Macrophages can convert citrulline into arginine. Biochem. J. 281, 45-8.

    Google Scholar 

  • Yano, M., Kanazawa, M., Terada, K., Namchai, C., Yamaizumi, M., Hanson, B., Hoogenraad, N. & Mori, M. (1997) Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J. Biol. Chem. 272, 8459-65.

    Google Scholar 

  • Yu, Y., Terada, K., Nagasaki, A., Takiguchi, M. & Mori, M. (1995) Preparation of recombinant argininosuccinate synthetase and argininosuccinate lyase: expression of the enzymes in rat tissues. J. Biochem. 117, 952-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyanaka, K., Gotoh, T., Nagasaki, A. et al. Immunohistochemical Localization of Arginase II and Other Enzymes of Arginine Metabolism in Rat Kidney and Liver. Histochem J 30, 741–751 (1998). https://doi.org/10.1023/A:1003468726969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003468726969

Keywords

Navigation