Skip to main content
Log in

A Physiologically Based Pharmacokinetic Analysis of Capecitabine, a Triple Prodrug of 5-FU, in Humans: The Mechanism for Tumor-Selective Accumulation of 5-FU

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To identify the factors governing the dose-limiting toxicity in the gastrointestine (GI) and the antitumor activity after oral administration of capecitabine, a triple prodrug of 5-FU, in humans.

Method. The enzyme kinetic parameters for each of the four enzymes involved in the activation of capecitabine to 5-FU and its elimination were measured experimentally in vitro to construct a physiologically based pharmacokinetic model. Sensitivity analysis for each parameter was performed to identify the parameters affecting tissue 5-FU concentrations.

Results. The sensitivity analysis demonstrated that (i) the dihydropyrimidine dehydrogenase (DPD) activity in the liver largely determines the 5-FU AUC in the systemic circulation, (ii) the exposure of tumor tissue to 5-FU depends mainly on the activity of both thymidine phosphorylase (dThdPase) and DPD in the tumor tissues, as well as the blood flow rate in tumor tissues with saturation of DPD activity resulting in 5-FU accumulation, and (iii) the metabolic enzyme activity in the GI and the DPD activity in liver are the major determinants influencing exposure to 5-FU in the GI. The therapeutic index of capecitabine was found to be at least 17 times greater than that of other 5-FU-related anticancer agents, including doxifluridine, the prodrug of 5-FU, and 5-FU over their respective clinical dose ranges.

Conclusions. It was revealed that the most important factors that determine the selective production of 5-FU in tumor tissue after capecitabine administration are tumor-specific activation by dThdPase, the nonlinear elimination of 5-FU by DPD in tumor tissue, and the blood flow rate in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Miwa, M. Ura, M. Nishida, N. Sawada, T. Ishikawa, K. Mori, N. Shimma, I. Umeda, and H. Ishitsuka. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumors by enzymes concentrated in human liver and tumor tissue. Eur. J. Cancer 34:1274-1281 (1998).

    Google Scholar 

  2. R. B. Diaso and B. E. Harris. Clinical pharmacology of 5-fluorouracil. Pharmacokinetics 16:215-237 (1989).

    Google Scholar 

  3. S. P. Khor, H. Amyx, S. T. Davis, D. Nelson, D. P. Baccanari, and T. Spector. Dihydropyrimidine dehydrogenase inactivation and 5-fluorouracil pharmacokinetics: Allometric scaling of animal data, pharmacokinetics and toxicokinetics of 5-fluorouracil in humans. Cancer Chemother. Pharmacol. 39:233-238 (1997).

    Google Scholar 

  4. J. Schüler, J. Cassidy, E. Dumont, B. Roos, S. Durston, L. Banken, M. Utoh, K. Mori, E. Weidekamm, and B. Reigner. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother. Pharmacol. 45:291-297 (2000).

    Google Scholar 

  5. H. Onodera, I. Kuruma, H. Ishitsuka, and I. Horii. Pharmacokinetic study of capecitabine in monkeys and mice: Species differences in distribution of the enzyme responsible for its activation to 5-FU. Xenobiol. Metabol. Dispos 15:439-451 (2000).

    Google Scholar 

  6. T. Ishikawa, Y. Fukase, T. Yamamoto, F. Sekiguchi, and H. Ishitsuka. Antitumor activities of a novel fluoropyrimidine, N 4-pentyloxycarbonyl-5′-deoxy-5-fluorocytidine (capecitabine). Biol. Pharm. Bull. 21:713-717 (1998).

    Google Scholar 

  7. T. Ishikawa, M. Utoh, N. Sawada, M. Nishida, Y. Fukase, F. Sekiguchi, and H. Ishitsuka. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem. Pharmacol. 55:1091-1097 (1998).

    Google Scholar 

  8. T. Ishikawa, F. Sekiguchi, Y. Fukase, N. Sawada, and H. Ishitsuka, Positive correlation between the efficacu of capecitabine and dosifluridine and the ratio of thymidine phsophorylase to dihydropymidine dehydorgenase activities in tumors in human cancer xenograft. Cancer Res. 58:685-690 (1998).

    Google Scholar 

  9. R. L. Dedrick. Animal scale up. J. Pharmacokinet. Biopharm. 1:435-461 (1973).

    Google Scholar 

  10. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data benzodiazepines and phenytoin. J. Biopharmacokinet. Biopharm. 8:165-176 (1980).

    Google Scholar 

  11. P. Vaupel, F. Kallinowski, and P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenviroment of human tumors: a review. Cancer Res. 49:6449-6465 (1989).

    Google Scholar 

  12. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Lonstreth. Methotrexate pharmacokientics. J. Pharm. Sci. 60:1128-1133 (1981).

    Google Scholar 

  13. K. K. Chan, J. L. Cohen, J. F. Gross, K. J. Himmelstein, J. R. Bateman, Y. Tsu-Lee, and A. Marlis. Prediction of adriamycine disposition in cancer patients using a physiologic, pharmacokinetic model. Cancer Treat. Rep. 62:1161-1171 (1978).

    Google Scholar 

  14. R. L. Dedrick, D. D. Forrester, J. N. Cannon, S. M. Dareer, and B. Mellett. Pharmacokinetics of 1-b-arabinofuranosyl cytosine (ARA-C) deamination in several species. Biochem. Pharmacol. 22:2405-2417 (1973).

    Google Scholar 

  15. K. S. Pang. A review of metabolite kinetics. J. Pharmacokinet. Biopharm. 13:633-662 (1985).

    Google Scholar 

  16. V. J. Stella and K. J. Himmelstein. Prodrug and site-specific drug delivery. J. Med. Chem. 23:1275-1282 (1980).

    Google Scholar 

  17. K. Shirai, I. Ohsawa, Y. Saito, and S. Yoshida. Effects of phospholipids on hydrolysis of trioleoylglycerol by human serum carboxylesterase. Biochim. Biophys. Acta 962:377-383 (1988)

    Google Scholar 

  18. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. J. Pharmacokinet. Biopharm. 10:637-647 (1982).

    Google Scholar 

  19. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model. Clin. Pharmacol. Ther. 16:87-98 (1974).

    Google Scholar 

  20. H. Zhu, R. J. Melder, L. T. Baxter, and R. K. Jain. Phsiologically based kinetic model of effect on cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res. 56:3771-3781 (1996).

    Google Scholar 

  21. B. Davis and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res. 10:1093-1095 (1993).

    Google Scholar 

  22. M. Chiba, M. Hensleigh, and J. H. Lin. Hepatic and intestinal metaboism of Indinavir, an HIV protease inhibitor, in rats and human microsomes, major role of CYP 3A. Biochem. Pharmacol. 53:1187-1195 (1997).

    Google Scholar 

  23. P. Klippert, P. Borm, and J. Noordhoek. Predition of intestinal first-pass effect of phenacetine in the rat from enzyme kinetic data—Correlation with in vivo data using mucosal blood flow. Biochem. Pharmacol. 31:2545-2548 (1982).

    Google Scholar 

  24. I. R. Judson, P. J. Beale, J. M. Trigo, W. Aherene, T. Cromptom, D. Jones, E. Bush, and B. Reigner. A human capecitabine excretion balance and pharmacokinetic study after administration of a single oral dose of 14C-labelled drug. Invest. New Drugs 17:49-56 (1999).

    Google Scholar 

  25. K. Mori, M. Hasegawa, M. Nishida, H. Toma, M. Fukuda, T. Kubota, N. Nasue, H. Yamana, H. K. Chung, T. Ikeda, K. Tkasaki, M. Oka, M. Kameyama, M. Toi, H. Fujii, M. Kitayamura, M. Murai, H. Sasaki, S. Ozono, H. Mukuuchi, Y. Shimada, Y. Onhishi, S. Aoyagi, K. Mizutani, M. Ogawa, A. Nakao, H. Kinoshita, T. Tono, H. Imanoto, Y. Nakashima, and T. Manabe. Espression levels of thymidine phosphorylase and dihydropyrimidine dehydrogenase in various human tumor tissues. Int. J. Oncol. 17:33-38 (2000).

    Google Scholar 

  26. A. S. E. Ojugo, P. M. J. McSheehy, M. Stubbs, G. Alder, C. L. Bashord, R. J. Maxwell, M. O. Leach, I. R. Judson, and J. R. Griffths. Influence of pH on the uptake of 5-fluorouracil into isolated tumor cell. Br. J. Cancer 77:873-879 (1998).

    Google Scholar 

  27. A. Hisaka and Y. Sugiyama. Analysis of nonlinear and nonsteady state hepatic ectraction with the dispersion model using the finite difference method. J. Phamacokinet. Biopharm. 26:495-519 (1998).

    Google Scholar 

  28. D. R. Budman, N. J. Meroopol, B. Reigner, P. J. Creaven, S. M. Lichtman, and E. Berghorn. Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J. Clin. Oncol. 16:1795-1802 (1998).

    Google Scholar 

  29. M. A. Villalona-Calero, G. R. Weiss, H. A. Burris, M. Kraynak, G. Rodrigues, R. L. Dregler, S. G. Eckhardt, B. Reigner, J. Moczygembra, H. U. Burger, T. Griffin, D. D. Von Hoff, and E. K. Rowinsky. Phase I and pharmacokinetic study of the oral fluoropyrimidine capecitabine in combination with paclitaxel in patients with advanced solid malignancies. J. Clin. Oncol. 17:1915-1925 (1999).

    Google Scholar 

  30. B. Reigner, J. Verweij, L. Dirix, J. Cassidy, C. Twelves, D. Allman, E. Weidekamm, B. Roos, L. Banken, M. Utoh, and B. Osterwalder. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin. Cancer Res. 4:941-948 (1998).

    Google Scholar 

  31. N. Sawada, T. Ishikawa, F. Sekiguchi, Y. Tanaka, and H. Ishitsuka. X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin. Cancer Res. 5:2948-2953 (1999).

    Google Scholar 

  32. M. Mackean, A. Planting, C. Twelves, J. Schellens, D. Allman, B. Osterwalder, B. Reigner, T. Griffin, S. Kaya, and J. Verweij. Phase I and pharmacologic study of intermittent twice-daily oral therapy with capoecitabine in patients with advanced and/or metastatic cancer. J. Clin. Oncol. 16:2977-2985

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, Y., Kato, Y., Ura, M. et al. A Physiologically Based Pharmacokinetic Analysis of Capecitabine, a Triple Prodrug of 5-FU, in Humans: The Mechanism for Tumor-Selective Accumulation of 5-FU. Pharm Res 18, 1190–1202 (2001). https://doi.org/10.1023/A:1010939329562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010939329562

Navigation