Skip to main content
Log in

Mass Spectrometry Innovations in Drug Discovery and Development

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This review highlights the many roles mass spectrometry plays in the discovery and development of new therapeutics by both the pharmaceutical and the biotechnology industries. Innovations in mass spectrometer source design, improvements to mass accuracy, and implementation of computer-controlled automation have accelerated the purification and characterization of compounds derived from combinatorial libraries, as well as the throughput of pharmacokinetics studies. The use of accelerator mass spectrometry, chemical reaction interface-mass spectrometry and continuous flow-isotope ratio mass spectrometry are promising alternatives for conducting mass balance studies in man. To meet the technical challenges of proteomics, discovery groups in biotechnology companies have led the way to development of instruments with greater sensitivity and mass accuracy (e.g., MALDI-TOF, ESI-Q-TOF, Ion Trap), the miniaturization of separation techniques and ion sources (e.g., capillary HPLC and nanospray), and the utilization of bioinformatics. Affinity-based methods coupled to mass spectrometry are allowing rapid and selective identification of both synthetic and biological molecules. With decreasing instrument cost and size and increasing reliability, mass spectrometers are penetrating both the manufacturing and the quality control arenas. The next generation of technologies to simplify the investigation of the complex fate of novel pharmaceutical entities in vitro and in vivo will be chip-based approaches coupled with mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. Kubinyi. Strategies and recent technologies in drug discovery. Pharmazie. 50:647-662 (1995).

    Google Scholar 

  2. C. M. Whitehouse, R. N. Dreyer, M. Yamashita, and J. B. Fenn. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57:675-679 (1985).

    Google Scholar 

  3. M. Karas and F. Hillenkamp. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299-2301 (1988).

    Google Scholar 

  4. S. Pleasance, S. W. Ayer, M. V. Laycock, and P. Thibault. Ion-spray mass spectrometry of marine toxins. III. Analysis of paralytic shellfish poisoning toxins by flow-injection analysis, liquid chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry. Rapid Commun. Mass Spectrom. 6:14-24 (1992).

    Google Scholar 

  5. T. Wang, L. Zeng, T. Strader, L. Burton, and D. B. Kassel. A New UltraFast FIA-MS Method for Microtiter Plate Analysis Using an Eight Probe Injection System. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Florida, May 31–June 4, 1998, pp. 1034.

  6. L. Zeng and D. B. Kassel. Developments of a fully automated parallel HPLC/mass spectrometry system for the analytical characterization and preparative purification of combinatorial libraries. Anal. Chem. 70:4380-4388 (1998).

    Google Scholar 

  7. V. de Biasi, N. Haskins, A. Organ, R. Bateman, K. Giles, and S. Jarvis. High throughput liquid chromatography/mass spectrometric analyses using a novel multiplexed electrospray interface. Rapid Commun. Mass Spectrom. 13:1165-1168 (1999).

    Google Scholar 

  8. Y. T. Lily, W. Goetzinger, and J. N. Kyranos. UltraFast HPLC/MS for the Identification and Characterization of Combinatorial Library Compounds. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida, May 31–June 4, 1998, pp. 1035.

  9. S. Jarvis, D. Little, J. Hoyes, S. Preece, D. Daley, and R. Scammell. Automated Exact Mass Measurements of Combinatorial Libraries by ESI-TOF-MS. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida, May 31–June 4, 1998, pp. 1043.

  10. M. C. Ventura, W. P. Farrell, C. M. Aurigemma, and M. J. Greig. Packed column supercritical fluid chromatography/mass spectrometry for high-throughput analysis. Part 2. Anal. Chem. 71:4223-4231 (1999).

    Google Scholar 

  11. T. A. Berger and W. H. Wilson. High-speed screening of combinatorial libraries by gradient packed-column supercritical fluid chromatography. J. Biochem. Biophys. Methods 43:77-85 (2000).

    Google Scholar 

  12. B. H. Hsu, E. Orton, S. Y. Tang, and R. A. Carlton. Application of evaporative light scattering detection to the characterization of combinatorial and parallel synthesis libraries for pharmaceutical drug discovery. J. Chromatogr. B. Biomed. Sci. Appl. 725: 103-12 (1999).

    Google Scholar 

  13. M. Dreux, M. Lafosse, and L. Morin-Allory. The evaporative light scattering detector: A universal instrument for non volatile solutes in LC and SFC. LC · GC Int. 9:148-156 (1996).

    Google Scholar 

  14. J. N. Kyranos and J. C. Hoga. High-throughput characterization of combinatorial libraries. Modern Drug Discovery 2:73-81 (1999).

    Google Scholar 

  15. M. C. Ventura, W. P. Farrell, C. M. Aurigemma, and M. J. Greig. Optimizing quality control of combinatorial libraries with SFC/MS. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics, Long Beach, California, June 11–15, 2000, p. 220.

  16. L. Schultz, C. D. Garr, L. M. Cameron, and J. Bukowski. High throughput purification of combinatorial libraries. Bioorg. Med. Chem. Lett. 8:2409-2414 (1998).

    Google Scholar 

  17. P. Bevan, H. Ryder, and I. Shaw. Identifying small-molecule lead compounds: The screening approach to drug discovery. Trends Biotech. 13:115-121 (1995).

    Google Scholar 

  18. Y-H. Chu, Y. M. Dunayevskiy, D. P. Kirby, P. Vouros, and B. L. Karger. Affinity capillary electrophoresis-mass spectrometry for screening combinatorial libraries. J. Am. Chem. Soc. 118:7827-7835 (1996).

    Google Scholar 

  19. L. Yang and C. S. Lee. Micellar electrokinetic chromatography-mass spectrometry. J. Chromatogr. A. 780:207-218 (1997).

    Google Scholar 

  20. Y. V. Lyubarskaya, S. A. Carr, D. Dunnington, W. P. Prichett, S. M. Fisher, E. R. Appelbaum, C. S. Jones, and B. L. Karger. Screening for high-affinity ligands to the SRC SH2 domain using capillary isoelectric focusing-electrospray ionization ion trap mass spectrometry. Anal. Chem. 70:4761-4770 (1998).

    Google Scholar 

  21. Y. Z. Zhao, R. B. van Breemen, D. Nikolic, C. R. Huang, C. P. Woodbury, A. Schilling, and D. L. Venton. Screening solution-phase combinatorial libraries using pulsed ultrafiltration/electrospray mass spectrometry. J. Med. Chem. 40:4006-4012 (1997).

    Google Scholar 

  22. M. A. Kelly, H. Liang, I. I. Sytwu, I. Vlattas, N. L. Lyons, B. R. Bowen, and L. P. Wennogle. Characterization of SH2-ligand interactions via library affinity selection with mass spectrometric detection. Biochemistry 35:11747-11755 (1996).

    Google Scholar 

  23. M. L. Nedved, S. Habibi-Goudarzi, B. Ganem, and J. D. Henion. Characterization of benzodiazepine “combinatorial” chemical libraries by on-line immunoaffinity extraction, coupled column HPLC-ion spray mass spectrometry-tandem mass spectrometry. Anal. Chem. 68:4228-4236 (1996).

    Google Scholar 

  24. S. Kaur, L. McGuire, D. Tang, G. Dollinger, and V. Huebner. Affinity selection and mass spectrometry-based strategies to identify lead compounds in combinatorial libraries. J. Protein Chem. 16:505-511 (1997).

    Google Scholar 

  25. http://www.cetek.com

  26. R. Lipper. An overview of developability considerations in lead selection and optimization. Presented at PhARMA Conference on “Cycle Time Reduction in Pharmaceutical and Analytical Development,” April 1999, Florida.

  27. E. Brewer and J. Henion. Atmospheric pressure ionization LC/MS/MS techniques for drug disposition studies. J. Pharm. Sci. 87:395-402 (1998).

    Google Scholar 

  28. M. Jemal, D. Teitz, Z. Ouyang, and S. Khan. Comparison of plasma sample purification by manual liquid-liquid extraction, automated 96-well liquid-liquid extraction and automated 96-well solid-phase extraction for analysis by high-performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. Biomed. Sci. Appl. 732:501-508 (1999).

    Google Scholar 

  29. H. Simpson, A. Berthemy, D. Buhrman, R. Burton, J. Newton, M. Kealy, D. Wells, and D. Wu. High throughput liquid chromatography/mass spectrometry bioanalysis using 96-well disk solid phase extraction plate for the sample preparation. Rapid Commun. Mass Spectrom. 12:75-82 (1998).

    Google Scholar 

  30. M. Zell, C. Husser, and G. Hopfgartner. Column-switching high-performance liquid chromatography combined with ion-spray tandem mass spectrometry for the simultaneous determination of the platelet inhibitor Ro 44-3888 and its pro-drug and precursor metabolite in plasma. Mass Spectrom. 32:23-32 (1997).

    Google Scholar 

  31. A. Marchese, C. McHugh, J. Kehler, and H. Bi. Determination of Pranlukast and its metabolites in human plasma by LC/MS/MS with PROSPEKT on-line solid-phase extraction. J. Mass Spectrom. 33:1071-1079 (1998).

    Google Scholar 

  32. V. C. Gao, W. C. Luo, Q. Ye, and M. Thoolen. Column switching in high-performance liquid chromatography with tandem mass spectrometric detection for high-throughput preclinical pharmacokinetic studies. J. Chromatogr. A 828:141-148 (1998).

    Google Scholar 

  33. R. A. van der Hoeven, A. J. Hofte, M. Frenay, H. Irth, U. R. Tjaden, J. van der Greef, A. Rudolphi, K. S. Boos, G. Marko Varga, and L. E. Edholm. Liquid chromatography-mass spectrometry with on-line solid-phase extraction by a restricted-access C18 precolumn for direct plasma and urine injection. Chromatogr. 762:193-200 (1997).

    Google Scholar 

  34. C. L. Stevenson, P. F. Augustijns, and R. W. Hendren. Use of Caco-2 cells and LC/MS/MS to screen a peptide combinatorial library for permeable structures. Int. J. Pharm. 177:103-115 (1999).

    Google Scholar 

  35. W. A. Korfmacher, C. A. Palmer, C. Nardo, K. Dunn-Meynell, D. Grotz, K. Cox, C. C. Lin, C. Elicone, C. Liu, and E. Duchoslav. Development of an automated mass spectrometry system for the quantitative analysis of liver microsomal incubation samples: a tool for rapid screening of new compounds for metabolic stability. Rapid Commun. Mass Spectrom. 13:901-907 (1999).

    Google Scholar 

  36. C. Gu, D. Nikolic, J. Lai, X. Xu, and R. B. van Breemen. Assays of ligand-human serum albumin binding using pulsed ultrafiltration and liquid chromatography-mass spectrometry. Comb. Chem. High Throughput Screen 2:353-359 (1999).

    Google Scholar 

  37. E. H. Kerns. Accelerated stability screens for drug optimization. Presented at the First AAPS Frontier Sympoium: From Good Ligands to Good Drugs: Optimizing Pharmaceutical Properties by Accelerated Screening, 1998, Bethesda, MD.

  38. L. W. Frick, K. K. Adkison, K. J. WellsKnecht, P. Woollard, and D. M. Higton. Cassette dosing: rapid in vivo assessment of pharmacokinetics. Pharm. Sci. & Tech. Today 1:12-18 (1998).

    Google Scholar 

  39. T. V. Olah, R. C. King, and C. L. Fernandez-Metzler. Application of LC-MS/MS quantitative analytical methods to drug metabolism studies in drug discovery. Presented at the First AAPS Frontier Symposium: From Good Ligands to Good Drugs: Optimizing Pharmaceutical Properties by Accelerated Screening, 1998, Bethesda, MD.

  40. C. E. Hop, Z. Wang, Q. Chen, and G. Kwei. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J. Pharm. Sci. 87:901-903 (1998).

    Google Scholar 

  41. B. S. Kuo, T. Van Noord, M. R. Feng, and D. S. Wright. Sample pooling to expedite bioanalysis and pharmacokinetic research. J. Pharm. Biomed. Anal. 16:837-846 (1998).

    Google Scholar 

  42. J. D. Gilbert, T. V. Olah, M. J. Morris, A. Bortnick, and J. Brunner. The use of stable isotope labeling and liquid chromatography-tandem mass spectrometry techniques to simultaneously determine the oral and ophthalmic bioavailability of timolol in dogs. J. Chromatogr. Sci. 36:163-168 (1998).

    Google Scholar 

  43. H. J. Jr. Pieniaszek, M. Mayersohn, M. P. Adams, R. J. Reinhart, and J. S. Barrett. Moricizine bioavailability via simultaneous, dual, stable isotope administration: Bioequivalence implications. J. Clin. Pharmacol. 39:817-825 (1999).

    Google Scholar 

  44. N. Zhang, S. T. Fountain, H. Bi, and D. T. Rossi. Quantification and rapid metabolite identification in drug discovery using API time-of-flight LC/MS. Anal. Chem. 72:800-806 (2000).

    Google Scholar 

  45. F. Beaudry, J. C. Yves Le Blanc, M. Coutu, I. Ramier, J. P. Moreau, and N. K. Brown. Metabolite profiling study of propranolol in rat using LC/MS/MS analysis. Biomed. Chromatogr. 13:363-369 (1999).

    Google Scholar 

  46. H. Z. Bu, M. Poglod, R. G. Micetich, and J. K. Khan. Structure elucidation of three isomeric metabolites of SYN-2836, a novel antifungal agent, in dogs via liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry methodologies. J. Mass Spectrom. 34:1185-1194 (1999).

    Google Scholar 

  47. X. Yu, D. Cui, and M. R. Davis. Identification of in vitro metabolites of Indinavir by “intelligent automated LC-MS/MS” (INTAMS) utilizing triple quadrupole tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 10:175-183 (1999).

    Google Scholar 

  48. C. L. Fernandez-Metzler, K. G. Owens, T. A. Baillie, and R. C. King. Rapid liquid chromatography with tandem mass spectrometry-based screening procedures for studies on the biotransformation of drug candidates. Drug Metab. Dispos. 27:32-40 (1999).

    Google Scholar 

  49. P. R. Tiller, A. P. Land, I. Jardine, D. M. Murphy, R. Sozio, A. Ayrton, and W. H. Schaefer. Application of liquid chromatography-mass spectrometry(n) analyses to the characterization of novel glyburide metabolites formed in vitro. J. Chromatogr. A 794:15-25 (1998).

    Google Scholar 

  50. G. J. Dear, J. Ayrton, R. Plumb, and I. J. Fraser. The rapid identification of drug metabolites using capillary liquid chromatography coupled to an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 13:456-463 (1999).

    Google Scholar 

  51. G. Hopfgartner, I. V. Chernushevich, T. Covey, J. B. Plomley, and R. Boner. Exact mass measurement of product ions for the structural elucidation of drug metabolites with a tandem quadrupole orthogonal-acceleration time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 10:1305-1314 (1999).

    Google Scholar 

  52. H. K. Lim, S. Stellingweif, S. Sisenwine, and K. W. Chan. Rapid drug metabolite profiling using fast liquid chromatography, automated multiple-stage mass spectrometry and receptor-binding. J. Chromatogr. A 831:227-241 (1999).

    Google Scholar 

  53. J. S. Vogel, K. W. Turteltaub, R. Finkel, and E. D. Nelson. Accelerator mass spectrometry. Anal. Chem. 67:353A-359A (1995).

    Google Scholar 

  54. S. D. Gilman, S. J. Gee, B. D. Hammock, J. S. Vogel, K. Haack, B. A. Buchholz, S. P. Freeman, R. C. Wester, X. Hui, and H. I. Maibach. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Anal. Chem. 70: 3463-3469 (1998).

    Google Scholar 

  55. J. Barker and R.C. Garner. Biomedical applications of accelerator mass spectrometry isotope measurements at the level of the atom. Rapid Commun. Mass Spectrom. 13:285-293 (1999).

    Google Scholar 

  56. Website for diagram of a small accelerator mass spectrometer. http://ihp-powerl.ethz.ch/ipp/tandem/tandy/Tandy_home.htm/

  57. A. Nakagawa, A. Kitagawa, M. Asami, K. Nakamura, D. A. Schoeller, R. Slater, M. Minagawa, and I. R. Kaplan. Evaluation of isotope ratio (IR) mass spectrometry for the study of drug metabolism. Biomed. Mass Spectrom. 12:502-506 (1985).

    Google Scholar 

  58. T. R. Browne, G. K. Szabo, A. Ajami, and D. G. Browne. Performance of human mass balance studies with stable isotope-labeled drug and continuous flow-isotope ratio mass spectrometry: a progress report. J. Clin. Pharmacol. 38:309-314 (1998).

    Google Scholar 

  59. J. T. Brenna, T. N. Corso, H. J. Tobias, and R. J. Caimi. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom. Rev. 16:227-258 (1997).

    Google Scholar 

  60. F. P. Abramson. CRIMS: Chemical reaction interface mass spectrometry. Mass Spectrom. Rev. 13:341-356 (1994).

    Google Scholar 

  61. F. P. Abramson, Y. Teffera, J. Kusmierz, R. C. Steenwyk, and P. G. Pearson. Replacing 14C with stable isotopes in drug metabolism studies. Drug Metab. Dispos. 24:697-701 (1996).

    Google Scholar 

  62. C. A. Jr. Goldthwaite, F. Y. Hsieh, S. W. Womble, B. J. Nobes, I. A. Blair, L. J. Klunk, and R. F. Mayol. Liquid chromatography/chemical reaction interface mass spectrometry as an alternative to radioisotopes for quantitative drug metabolism studies. Anal. Chem. 68:2996-3001 (1996).

    Google Scholar 

  63. P. Chen, Y. Teffera, G. E. Black, and F. P. Abramson. Flow injection with chemical reaction interface-isotope ratio mass spectrometry: an alternative to off-line combustion for detecting low levels of enriched 13C in mass balance studies. J. Am. Soc. Mass Spectrom. 10:153-158 (1999).

    Google Scholar 

  64. B. L. Osborn and F. P. Abramson. Pharmacokinetic and metabolism studies using uniformly stable isotope labeled proteins with HPLC/CRIMS detection. Biopharm. Drug Dispos. 19:439-444 (1998).

    Google Scholar 

  65. J. R. III Yates. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 33:1-19 (1998).

    Google Scholar 

  66. D. Arnott, K. L. O'Connell, K. L. King, and J. T. Stults. An integrated approach to proteome analysis: Identification of proteins associated with cardiac hypertrophy. Anal. Biochem. 258: 1-18 (1998).

    Google Scholar 

  67. K. Williams. Strategies in proteome research. Electrophoresis 19:NIL3-NIL4 (1998).

    Google Scholar 

  68. N. H. Packer, A. Pawlak, W. C. Kett, A. A. Gooley, J. W. Redmond, and K. L. Williams. Proteome analysis of glycoforms: A review of strategies for the microcharacterisation of glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18:452-460 (1997).

    Google Scholar 

  69. B. Kuster and M. Mann. Identifying proteins and post-translational modifications by mass spectrometry. Current Opinions Struct. Biol. 8:393-400 (1998).

    Google Scholar 

  70. J. S. Cottrell. Protein identification by peptide mass fingerprinting. Pept. Res. 7:115-124 (1994).

    Google Scholar 

  71. W. J. Henzel, T. M. Billeci, J. T. Stults, S. C. Wong, C. Grimley, and C. Watanabe. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. 90:5011-5015 (1993).

    Google Scholar 

  72. M. Mann, P. Hojrup, and P. Roepstorff. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22:338-345 (1993).

    Google Scholar 

  73. J. R. III Yates, S. Speicher, P. R. Griffin, and T. Hunkapiller. Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214:397-408 (1993).

    Google Scholar 

  74. J. K. Eng, A. L. McCormack, and J. R. III Yates. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976-989 (1994).

    Google Scholar 

  75. M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66:4390-4399 (1994).

    Google Scholar 

  76. K. R. Jonscher and J. R. III Yates. The quadrupole ion trap mass spectrometer—A small solution to a big challenge. Anal. Biochem. 244:1-15 (1997).

    Google Scholar 

  77. B. Spengler. Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom. 32:1019-1036 (1997).

    Google Scholar 

  78. M. Wilm and M. Mann. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68:1-8 (1996).

    Google Scholar 

  79. E. J. Takach, W. M. Hines, D. H. Patterson, P. Juhasz, A. M. Falick, M. L. Vestal, and S. A. Martin. Accurate mass measurements using MALDI-TOF with delayed extraction. J. Protein Chem. 16:363-369 (1997).

    Google Scholar 

  80. K. R. Clauser, P. Baker, and A. L. Burlingame. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71:2871-82 (1999).

    Google Scholar 

  81. P. Berndt, U. Hobohm, and H. Langen. Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20:3521-3526 (1999).

    Google Scholar 

  82. M. Traini, A. A. Gooley, K. Ou, M. R. Wilkins, L. Tonella, J. C. Sanchez, D. F. Hochstrasser, and K. L. Williams. Towards an automated approach for protein identification in proteome projects. Electrophoresis 19:1941-1949 (1998).

    Google Scholar 

  83. T. I. Stevensen, J. A. Loo, and K. D. Greis. Coupling capillary HPLC to MALDI and N-terminal sequencing of peptides via automated microblotting onto membrane substrates. Anal. Chem. 262:99-109 (1998).

    Google Scholar 

  84. K. L. Walker, R. W. Chiu, C. A. Monnig, and C. L. Wilkins. Off-line coupling of capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 67:4197-4204 (1995).

    Google Scholar 

  85. H. Orsnes, T. Graf, H. Degn, and K. K. Murray. A rotating ball inlet for on-line MALDI mass spectrometry. Anal. Chem. 72: 251-254 (2000).

    Google Scholar 

  86. Q. Zhan, A. Gusev, and D. M. Hercules. A novel interface for on-line coupling of liquid capillary chromatography with matrix-assisted laser desorption/ionization detection. Rapid Commun. Mass Spectrom. 13:2278-2283 (1999).

    Google Scholar 

  87. P. Cao and M. Moini. Capillary electrophoresis/electrospray ionization high mass accuracy time-of-flight mass spectrometry for protein identification using peptide mapping. Rapid Commun. Mass Spectrom. 12:864-870 (1998).

    Google Scholar 

  88. D. Figeys, S. P. Gygi, Y. Zhang, J. Watts, M. Gu, and R. Aebersold. Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes. Electrophoresis 19:1811-1818 (1998).

    Google Scholar 

  89. H. R. Morris, T. Paxton, M. Panico, R. McDowell, and A. Dell. A novel geometry mass spectrometry, the Q-TOF, for low-femtomole/attomole-range biopolmer sequencing. J. Protein Chem. 16:469-479 (1997).

    Google Scholar 

  90. S. P. Gygi, B. Rist, S. Gerber, F. Turecek, M. H. Gelb, and R. Aerbersold. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotech. 17:994-999 (1999).

    Google Scholar 

  91. A. Apffel, J. Chakel, S. Udiavar, S. Swedberg, W. S. Hancock, C. Souders, and E. Pungor. Applications of new analytical technology to the production of a “well characterized biological”. In F. Brown, A. Lubiniecki, G. Murano (eds.), Characterization of Biotechnology Pharmaceutical Products Dev Biol Stand, vol. 96, Basel, Karger, 1998, pp. 11-25.

    Google Scholar 

  92. G. H. Zhou, G. A. Luo, Y. Zhou, K. Y. Zhou, X. D. Zhang, and L. Q. Huang. Application of capillary electrophoresis, liquid chromatography, electrospray-mass spectrometry and matrix-assisted laser desorption/ionization — time of flight — mass spectrometry to the characterization of recombinant human erythropoietin. Electrophoresis 19:2348-2355 (1998).

    Google Scholar 

  93. S. L. Wu. The use of sequential high-performance liquid chromatography and capillary zone electrophoresis to separate the glycosylated peptides from recombinant tissue plasminogen activator to a detailed level of microheterogeneity. Anal. Biochem. 253:85-97 (1997).

    Google Scholar 

  94. V. Ling, A. W. Guzzetta, E. Canova-Davis, J. T. Stults, W. S. Hancock, T. R. Covey, and B. I. Shushan. Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal. Chem. 63: 2909-2915 (1991).

    Google Scholar 

  95. A. Marina, M. A. Garcia, J. P. Albar, J. Yague, J. A. Lopez de Castro, and J. Vazquez. High-sensitivity analysis and sequencing of peptides and proteins by quadrupole ion trap mass spectrometry. J. Mass Spectrom. 34:17-27 (1999).

    Google Scholar 

  96. U. Bahr and M. Karas. Differentiation of “isobaric” peptides and human milk oligosaccharides by exact mass measurements using electrospray ionization orthogonal time-of-flight analysis. Rapid Commun. Mass Spectrom. 13:1052-1058 (1999).

    Google Scholar 

  97. J. Lippincott, E. Hess, and I. Apostol. Mapping of recombinant hemoglobin using immobilized trypsin cartridges. Anal. Biochem. 252:314-325 (1997).

    Google Scholar 

  98. J. W. Bloom, M. S. Madanat, and M. K. Ray. Cell line and site specific comparative analysis of the N-linked oligosaccharides on human ICAM-1des454-532 by electrospray ionization mass spectrometry. Biochem. 35:1856-1864 (1996).

    Google Scholar 

  99. A. Hooker and D. James. The glycosylation heterogeneity of recombinant human IFN-γ. J. Interferon Cytokine Res. 18:287-295 (1998).

    Google Scholar 

  100. J. C. Severs, M. Carnine, H. Eguizabal, and K. K. Mock. Characterization of tyrosine sulfate residues in antihemophilic recombinant factor VIII by liquid chromatography electrospray ionization tandem mass spectrometry and amino acid analysis. Rapid Commun. Mass Spectrom. 13:1016-1023 (1999).

    Google Scholar 

  101. L. A. Merewether, J. Le, M. D. Jones, R. Lee, G. Shimamoto, and H. S. Lu. Development of disulfide peptide mapping and determination of disulfide structure of recombinant human osteoprotegerin chimera produced in Escherichia coli. Arch. Biochem. Biophys. 375:101-110 (2000).

    Google Scholar 

  102. M. Eng, V. Ling, J. A. Briggs, K. Souza, E. Canova-Davis, M. F. Powell, and L. R. De Young. Formulation development and primary degradation pathways for recombinant human nerve growth factor. Anal. Chem. 69:4184-4190 (1997).

    Google Scholar 

  103. R. Senderoff, K. M. Kontor, L. Kreilgaard, J. J. Chang, S. Patell, J. Krakover, J. K. Heffernan, L. B. Snell, and G. B. Rosenberg. Consideration of conformational transition and racemization during process development of recombinant glucagon-like peptide-1. J. Pharm. Sci. 87:183-189 (1998).

    Google Scholar 

  104. C. P. Quan, S. Wu, N. Dasovich, C. Hsu, T. Patapoff, and E. Canova-Davis, Susceptibility of rhDNase I to glycation in the dry-powder state. Anal. Chem. 71:4445-4454 (1999)

    Google Scholar 

  105. E. Watson, B. Shah, R. DePrince, R. W. Hendren, and R. Nelson. Matrix-assisted laser desorption mass spectrometric analysis of a pegylated recombinant protein. Biotechniques 16:278-281 (1994).

    Google Scholar 

  106. R. Mhatre, J. Woodard, and C. Zeng. Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. Rapid Commun. Mass Spectrom. 13:2503-2510 (1999).

    Google Scholar 

  107. R. G. Keck, L. Berleau, R. Harris, and B. A. Keyt. Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF. Arch. Biochem. Biophys. 344:103-13 (1997).

    Google Scholar 

  108. J. Wu and J. T. Watson. Optimization of the cleavage reaction for cyanylated cysteinyl proteins for efficient and simplified mass mapping. Anal. Biochem. 258:268-276 (1998).

    Google Scholar 

  109. M. Field, D. Papac, and A. Jones. The use of high-performance anion-exchange chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to monitor and identify oligosaccharide degradation. Anal. Biochem. 239: 92-98 (1996).

    Google Scholar 

  110. L. Truong, B. Shyong, E. Chin, J. Herrmann, R. Harris, and V. Ling. Simplified identification of monoclonal antibodies and glycoproteins by mass spectrometry for production control systems. Presentation at the American Society for Mass Spectrometry, Dallas, TX, 1999.

  111. V. Klyuchnicchenko, A. Rodenbrock, J. Thommes, M. Kula, H. Heine, and M. Biselli. Analysis of hybridoma cell culture processes by SDS/gel capillary electrophoresis and matrix-assisted laser desorption ionization-time-of-flight MS. Biotechnol. Appl. Biochem. 27:181-188 (1998).

    Google Scholar 

  112. T. Chan, E. Chin, V. Katta, V. Ling, R. Harris, and J. Herrmann. Peptide mapping by MALDI-TOF-MS of recombinant protein pharmaceuticals as QC lot release test. Poster at the 4th Symposium on the Analysis of Well Characterized Biotechnology Pharmaceuticals, San Francisco, Jan 2000.

  113. K. C. Zoon. Biotechnology Pharmaceuticals 2000. Presented at the 4th Symposium on the Analysis of Well Characterized Biotechnology Pharmaceuticals, San Francisco, Jan 2000.

  114. H. Z. Wan, S. Kaneshiro, J. Frenz, and J. Cacia. Monitoring glycosylation levels of a recombinant antibody using electrospray mass spectrometry with selective ion-monitoring. Anal. Chem. submitted (2000).

  115. B. Austen. Ciphergen's PBS-1 boosts Alzheimer's research. Genetic Eng. News. 20:32-33 (2000).

    Google Scholar 

  116. R. Kniss. Revolution of the drug discovery process using laboratory-on-a-chip technology. Amer. Lab. 30:40-42 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papac, D.I., Shahrokh, Z. Mass Spectrometry Innovations in Drug Discovery and Development. Pharm Res 18, 131–145 (2001). https://doi.org/10.1023/A:1011049231231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011049231231

Navigation