Skip to main content
Log in

Expression of Multidrug Resistance-Associated Protein (MRP) in Human Retinal Pigment Epithelial Cells and Its Interaction with BAPSG, a Novel Aldose Reductase Inhibitor

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this study was to determine the expression and activity of multidrug resistance–associated protein (MRP) in the retinal pigment epithelial (RPE) cells and to further assess whether BAPSG, a novel anionic aldose reductase inhibitor, interacts with MRP.

Methods. Functional and biochemical evidence for MRP was obtained in a human retinal pigment epithelial (ARPE–19) cell line and primary cultures of human retinal pigment epithelial (HRPE) cells. Fluorescein accumulation and efflux in the presence and absence of MRP inhibitors was used to obtain functional evidence for MRP. Western blots and RT–PCR were used to obtain biochemical evidence for MRP1. The influence of MRP inhibitors on BAPSG accumulation and efflux in ARPE–19 cells was determined to understand its interaction with MRP.

Results. MRP inhibitors increased fluorescein accumulation and reduced efflux in RPE cells. Both cell types exhibited a 190–kDa western blot band corresponding to MRP1 protein and a 287 bp RT–PCR band corresponding to MRP1 mRNA. MRP inhibitors reduced BAPSG efflux and increased its accumulation in ARPE–19 cells.

Conclusions. MRP is functionally and biochemically active in human RPE cells. Anionic BAPSG is a likely substrate for MRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. A. Hughes, R. P. Gallemore, and S. S. Miller. Transport mechanisms in the retinal pigment epithelium. In M. F. Marmor, and T. J. Wolfenberger (eds.), The Retinal Pigment Epithelium Function and Disease. Oxford University Press, New York, 1998 pp. 103–135.

    Google Scholar 

  2. S. Koyano, M. Araie, and S. Eguchi. Movement of fluorescein and its glucuronide across retinal pigment epithelium–choroid. Invest. Ophthalmol. Vis. Sci. 34:531–538 (1993).

    Google Scholar 

  3. E. Bakos, T. Hegedus, Z. Hollo, E. Welker, G. E. Tusnady, G. J. Zaman, M. J. Flens, A. Varadi, and B. Sarkadi. Membrane topology and glycosylation of the human multidrug resistance–associated protein. J. Biol. Chem. 271:12322–12326 (1996).

    Google Scholar 

  4. M. Kool, M. de Haas, G. L. Scheffer, R. J. Scheper, M. J. Van Eijk, J. A. Juijn, F. Baas, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of multidrug resistance–associated protein gene (MRP1) in human cancer cell lines. Cancer Res. 57:3537–3547 (1997).

    Google Scholar 

  5. M. Kool, M. van der Linden, M. de Haas, F. Baas, and P. Borst. Expression of human MRP6, a homologue of multidrug resistance protein gene MRP1 in tissues and cancer cells. Cancer Res. 59:175–182 (1999).

    Google Scholar 

  6. Z. Hollow, L. Homolya, T. Hegedus, and B. Sarkadi. Transport properties of the multidrug resistance–associated protein (MRP) in human tumor cells. FEBS Lett. 383:99–104 (1996).

    Google Scholar 

  7. Y. Zhang, H. Han, W. F. Elmquist, and D. W. Miller. Expression of various multidrug resistance protein (MRP) homologues in brain microvessel endothelial cells. Brain Res. 876:148–153 (2000).

    Google Scholar 

  8. V. V. Rao, J. L. Dahlheimer, M. E. Bardgett, A. Z. Snyder, R. A. Finch, Sartorelli, and W. D. Piwnica. Choroid plexus epithelial expression of MDR1 P–glycoprotein and multidrug resistance–associated protein contribute to the blood–cerebrospinal–fluid–permeability barrier. Proc. Natl. Acad. Sci. USA. 96:3900–3905 (1999).

    Google Scholar 

  9. H. Huai–Yun, D. T. Secrest, K. S. Mark, D. Carney, C. Brandquist, W. F. Elmquist, and D. W. Miller. Expression of multidrug resistance–associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Commun. 243:816–820 (1998).

    Google Scholar 

  10. K. C. Dunn, A. E. Aotaki–Keen, F. R. Putkey, and L. M. Hjelmeland. ARPE–19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 62:155–169 (1996).

    Google Scholar 

  11. K. C. Dunn, A. D. Marstein, V. L. Bonilha, E. Rodriguez–Boulan, F. Giordano, and L. M. Hjelmeland. Use of the ARPE–19 cell line as a model of RPE polarity: Basolateral secretion of FGF5. Invest. Ophthalmol. Vis. Sci. 39:2744–2749 (1998).

    Google Scholar 

  12. G. M. Holtkamp, M. van Rossem, A. F. de Vos, B. Willekens, R. Peek, and A. Kijlstra. Polarized secretion of IL–6 and IL–8 by human retinal pigment epithelial cells. Clin. Exp. Immunol. 112:34–43 (1998).

    Google Scholar 

  13. R. N. Frank, R. Amin, A. Kennedy, and T. C. Hohman. An aldose reductase inhibitor and aminoguanidine prevent vascular endothelial growth factor expression in rats with long–term galactosemia. Arch. Ophthalmol. 115:1036–1047 (1997).

    Google Scholar 

  14. M. Lu, S. Amano, K. Miyamoto, R. Garland, K. Keough, W. Qin, and A. P. Adamis. Insulin–induced vascular endothelial growth factor expression in retina. Invest. Ophthalmol. Vis. Sci. 57:584–589 (1999).

    Google Scholar 

  15. J. DeRuiter, A. N. Brubaker, M. A. Garner, J. M. Barksdale, and C. A. Mayfield. In vitro inhibitory activity of substituted N–benzenesulfonylglycine derivatives. J. Pharm. Sci. 76:149–152 (1987).

    Google Scholar 

  16. U. B. Kompella, J. V. Aukunuru, G. Sunkara, and S. P. Ayalasomayajula. Influence of oxygen free radicals, 4–hydroxynonenal, 15–HETE, and aldose reductase pathway on vascular endothelial growth factor secretion from human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 41:S772 (2000).

    Google Scholar 

  17. D. W. Miller, E. V. Batrakova, and A. V. Kabanov. Inhibition of multidrug resistance–associated protein (MRP) functional activity with pluronic block copolymers. Pharm. Res. 16:396–401 (1999).

    Google Scholar 

  18. W. B. Thoreson, B. N. Khandalavala, R. G. Manahan, I. A. Polyak, J. L. Liu, and D. M. Chacko. Lysophosphatidic acid stimulates proliferation of human retinal pigment epithelial cells. Curr. Eye Res. 16:698–702 (1997).

    Google Scholar 

  19. G. Sunkara, J. DeRuiter, C. R. Clark, and U. B. Kompella. Invitro hydrolysis, permeability, and ocular uptake of Prodrugs of N–[4–(benzoylamino) phenylsulfonyl]glycine, a novel aldose reductase inhibitor. J. Pharm. Pharmacol. 52:1113–1122 (2000).

    Google Scholar 

  20. D. W. Miller, M. M. Fontain, C. Kolar, and T. Lawson. The expression of multidrug resistance–associated protein (MRP) in pancreatic adenocarcinoma cell lines. Cancer Lett. 107:301–306 (1996).

    Google Scholar 

  21. M. P. Draper, R. L. Marter, and S. B. Levy. Indomethacin–mediated reversal of multidrug resistance and drug efflux in human and murine cell lines over expressing MRP, but not P–glycoprotein. Br. J. Cancer. 76:810–815 (1997).

    Google Scholar 

  22. S. Gollapudi, C. H. Kim, B. N. Tran, S. Sangha, and S. Gupta. Probenecid reverses multidrug resistance in multidrug resistance associated–protein–overexpressing HL60/AR, H69/AR cells but not in P–glycoprotein–over expressing HL60/Tax and P388/ADR cells. Cancer Chemother. Pharmacol. 40:150–158 (1997).

    Google Scholar 

  23. W. Berger, L. Elbling, E. Hauptmann, and M. Micksche. Expression of the multidrug resistance–associated protein (MRP) and chemoresistance of human non–small–cell lung cancer cells. Int. J. Cancer 73:84–93 (1997).

    Google Scholar 

  24. M. A. Barrand, T. Rhodes, M. S. Center, and P. R. Twentyman. Chemosensitization and drug accumulation effects of cyclosporin A, PSC–833 and verapamil in human MDR large cell lung cancer cells expressing a 190 kD membrane protein distinct from P–glycoprotein. Eur. J. Cancer 29:408–415 (1993).

    Google Scholar 

  25. L. Pascolo, C. Fernetti, P. Doroti, B. Samanta, V. G. Maria, A. Spano, D. Puzzer, C. Tiribelli, A. Amoroso, and S. Crovella. Detection of MRP1mRNA in human tumors and tumor cell lines by in situ RT–PCR. Biochem. Biophys. Res. Commun. 275:466–471 (2000).

    Google Scholar 

  26. H. Sun, D. W. Miller, and W. F. Elmquist. Organic anion transport in the central nervous system: A study of fluorescein CNS distribution kinetics. PharmSci 2:1321 (2000).

    Google Scholar 

  27. G. L. Scheffer, M. Kool, M. Heijn, M. de Haas, A. C. Pijnenborg, J. Wijnholds, A. van Helvoort, M. C. de Jong, J. H. Hooijberg, C. A. Mol, M. van der Linden, J. M. de Vree, R. P. Elferink, P. Borst, R. J. Scheper. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P–glycoprotein with a panel of monoclonal antibodies. Cancer Res. 60:5269–5277 (2000).

    Google Scholar 

  28. U. B. Kompella, G. Sunkara, E. Thomas, C. R. Clark, and J. DeRuiter. Rabbit corneal and conjunctival permeability of the novel aldose reductase inhibitors: N–[4–(benzoylamino)phenyl] sulphonyl glycines and N–benzyoyl–N–phenyl glycines. J. Pharm. Pharmacol. 51:921–927 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aukunuru, J.V., Sunkara, G., Bandi, N. et al. Expression of Multidrug Resistance-Associated Protein (MRP) in Human Retinal Pigment Epithelial Cells and Its Interaction with BAPSG, a Novel Aldose Reductase Inhibitor. Pharm Res 18, 565–572 (2001). https://doi.org/10.1023/A:1011060705599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011060705599

Navigation