Skip to main content
Log in

Genetic Polymorphism of Drug Metabolizing Enzymes: New Mutations in CYP2D6 and CYP2A6 Genes in Japanese

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Genetic polymorphism of drug metabolizing enzymes, particularly cytochrome P450 (CYP), is an important cause of adverse drug reactions. Multiple gene mutations in CYP have been shown to be phenotype. The occurrence of genetic polymorphism has been seen in genes for CYP1A1, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A5. This review discusses the molecular mechanism of two genetic polymorphisms, debrisoquine/sparteine (CYP2D6) coumarin (CYP2A6) polymorphisms. In addition, elucidation of gene mutations of CYP2D6 and CYP2A6 in Japanese will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. R. Nelson, L. Koymans, T. Kamataki, J. J. Stageman, R. Feyereisen, D. J. Waxman, M. R. Waterman, O. Gotoh, M. J. Coon, R. W. Estabrook, I. G. Gunsalus, and D. W. Nebert. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharamacogenetics 6:1–42 (1996).

    Google Scholar 

  2. K. Broøsen, S. M. F. de Morais, U. A. Meyer, and J. A. Goldstein. A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics 5:312–317 (1995).

    Google Scholar 

  3. S. M. F. de Morais, G. R. Wilkinson, J. Blaisdell, K. Nakamura, U. A. Meyer, and J. A. Goldstein. The major genetic defect responsible for the polymorphism of S-mephenytoin in humans. J. Biol. Chem. 269:15419–15422 (1994).

    Google Scholar 

  4. S. M. F. de Morais, G. R. Wilkinson, K. Nakamura, U. A. Meyer, and J. A. Goldstein. Identification of a new genetic defect responsible for the polymorphism of S-mephenytoin metabolism in Japanese. Mol. Pharmacol, 46:594–598 (1994).

    Google Scholar 

  5. J. A. Goldstein, T. Ishizaki, K. Chiba, S. M. F. de Morais, D. Bell, P. M. Krahn, and D. A. P. Evans. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharamacogenetics 7:59–64 (1997).

    Google Scholar 

  6. A. K. Daly, M. Armstrong, S. C. Monkman, M. E. Idle, and J. R. Idle. Genetic and metabolic criteria for the assignment of debrisoquine 4-hydroxylation (cytochrome P450 2D6) phenotypes. Pharmacogenetics 1:33–41 (1991).

    Google Scholar 

  7. E. Evans and M. V. Relling. Concordance of P450 2D6 debrisoquine hydroxylase phenotype and genotype: inability of dextromethorphan metabolic ratio to discriminate reliably heterozygous and homozygous extensive metabolizers. Pharmacogenetics 1:143–148 (1991).

    Google Scholar 

  8. K. Nakamura, T. Yokoi, K. Inoue, N. Shimada, N. Ohashi, T. Kume, and T. Kamataki. CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharamacogenetics 6:449–457 (1996).

    Google Scholar 

  9. F. J. Gonzalez. The CYP2D subfamily. In C. Ioannides, (ed.), Cytochromes P450, metabolic and toxicological aspects, CRC Press, New York, 1996, pp. 183–211.

    Google Scholar 

  10. M. Eichelbaum, N. Spannbrucker, B. Stincke, and H. J. Dengler. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16:183–187 (1979).

    Google Scholar 

  11. D. A. P. Evans, A. Mahgoub, T. P. Sloan, J. R. Idle, and R. L. Smith. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J. Med. Genet. 17:102–105 (1980).

    Google Scholar 

  12. K. Nakamura, F. Goto, A. Ray, C. B. McAllister, E. Jacqz, G. R. Wilkinson, and R. A. Branch. Interethnic differences in genetic polymorphism of debrisoquine and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin. Pharmacol. Ther. 38:402–408 (1985).

    Google Scholar 

  13. T. Ishizaki, M. Eichelbaum, Y. Horai, K. Hashimoto, K. Chiba, and H. J. Dengler. Evidence for polymorphic oxidation of sparteine in Japanese subjects. Br. J. Clin. Pharmacol. 23:482–485 (1987).

    Google Scholar 

  14. Y. Horai, M. Nakano, T. Ishizaki, K. Ishikawa, H. H. Zhou, B. J. Zhou, C. L. Liao, and L. M. Zhang. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin. Pharmacol. Ther. 46:198–207 (1987).

    Google Scholar 

  15. D. R. Sohn, S. G. Shin, C. W. Park, M. Kusaka, K. Chiba, and T. Ishizaki. Metoprolol oxidation polymorphism in a Korean population: comparison with native Japanese and Chinese populations. Br. J. Clin. Pharmacol. 32:504–507 (1991).

    Google Scholar 

  16. A. K. Daly. Molecular basis of polymorphic drug metabolism. J. Mol. Med. 73:539–553 (1995).

    Google Scholar 

  17. M. L. Dahl, I. Johansson, M. Porsmyr-Palmertz, M. Ingelmen-Sundberg, and F. Sjüqvist. Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population. Clin. Pharmacol. Ther. 51:12–17 (1992).

    Google Scholar 

  18. W. Cairns, C. A. D. Smith, A. W. McLaren, and C. R. Wolf. Characterization of the human cytochrome P4502D6 promoter. J. Biol. Chem. 271:25269–25276 (1996).

    Google Scholar 

  19. F. J. Gonzalez, F. Vilbois, J. P. Hardwick, O. McBride, D. W. Nebert, H. V. Gelboin, and U. A. Mayer. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2:174–182 (1988).

    Google Scholar 

  20. S. Kimura, M. Umeno, R. C. Skoda, U. A. Meyer, and F. J. Gonzalez. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Genet. 45:889–904 (1989).

    Google Scholar 

  21. A. K. Daly, J. Brockmöller, F. Broly, M. Eichelbaum, W. E. Evans, F. J. Gonzalez, J.-D. Huang, J. R. Idle, M. Ingelman-Sundberg, T. Ishizaki, E. Jacqz-Aigrain, U. A. Meyer, D. W. Nebert, V. M. Steen, C. R. Wolf, and U. M. Zanger. Nomenclature of human CYP2D6 alleles. Pharmacogenetics 6:193–201 (1996).

    Google Scholar 

  22. R. Saxena, G. L. Shaw, M. V. Relling, J. N. Frame, D. T. Moir, W. E. Evans, N. Caporaso, and B. Weiffenbach. Identification of a new variant CYP2D6 allele with a single base deletion in exon 3 and its association with the poor metabolizer phenotype. Hum. Mol. Genet. 3:923–926 (1994).

    Google Scholar 

  23. R. Tyndale, T. Aoyama, F. Broly, T. Matsunaga, T. Inaba, W. Kalow, H. V. Gelboin, U. A. Mayer, and F. J. Gonzalez. Identification of a new CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1:26–32 (1991)

    Google Scholar 

  24. H. Yokota, S. Tamura, H. Furuya, S. Kimura, M. Watanabe, I. Kanazawa, I. Kondo, and F. J. Gonzalez. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vitro rates of sparteine metabolism. Pharmacogenetics 3:256–263 (1993).

    Google Scholar 

  25. I. Johansson, E. Lundqvist, L. Bertilsson, M. L. Dahl, F. Sjöqvist, and M. Ingelman-Sundberg. Inherited amplification of an active gene in the cytochrome P450 2D-locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. U.S.A. 90:11825–11829 (1993).

    Google Scholar 

  26. I. Johansson, M. Oscarson, Q. Y. Yue, L. Bertilsson, F. Sjöqvist, and M. Ingelman-Sundberg. Genetic analysis of the Chinese cytochrome P450 2D locus. Characterization of variant CYP2D6-genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol. 46:452–459 (1994).

    Google Scholar 

  27. M. Armstrong, K. Fairbrother, J. R. Idle, and A. K. Daly. The cytochrome P450 CYP2D6 allelic variant CYP2D6J and related polymorphisms in a European population. Pharmacogenetics 4:73–81 (1994).

    Google Scholar 

  28. M.-L. Lai, S.-L. Wang, M.-D. Lai, E. T. Lin, M. Tse, and J.-D. Huang. Propranolol desposition in Chinese subjects of different CYP2D6 genotypes. Clin. Pharmacol. Ther. 58:264–268 (1995).

    Google Scholar 

  29. Z.-Y. Hou, C.-P. Chen, W.-C. Yang, M.-D. Lai, E. T. Buchert, H.-M. Chung, L. W. Pickle, and R. L. Woosley. Determination of dextromethorphan metabolic phenotype by salivary analysis with a reference to genotype in Chinese patients receiving renal hemodialysis. Clin. Pharmacol. Ther. 59:411–417 (1996).

    Google Scholar 

  30. C.-Y. Tseng, S.-L. Wang, M.-D. Lai, M.-L. Lai, and J.-D. Huang. Formation of morphine from codeine in Chinese subjects of different CYP2D6 genotypes. Clin. Pharmacol. Ther. 60:177–182 (1996).

    Google Scholar 

  31. T. Yokoi, Y. Kosaka, M. Chida, K. Chiba, H. Nakamura, T. Ishizaki, M. Kinoshita, K. Sato, F. J. Gonzalez, and T. Kamataki. A new CYP2D6 allele with poor metabolizer phenotype. Pharmacogenetics 6:395–401 (1996).

    Google Scholar 

  32. P. Dayer, T. Leemann, A. Marmay, and J. Rosenthaler. Interindividual variation of β-adenoreceptor blocking drugs, plasma concentrations and effect: influence of genetic status on behavior of atenolol, bopindolol and metoprolol. Eur. J. Clin. Pharmacol. 28:149–153 (1985).

    Google Scholar 

  33. M. Eichelbaum, S. Mineshita, E. E. Ohnhaus, and C. Zekorn. The influence of enzyme induction on polymorphic sparteine oxidation. Br. J. Clin. Pharmacol. 22:49–53 (1986).

    Google Scholar 

  34. H. Raunio, T. Syngelma, M. Pasanen, R. Juvane, P. Honkakoski, M. A. Kairaluoma, E. Sotaniemi, M. A. Lang, and O. Pelkonen. Immunochemical and catalytical studies on hepatic coumarin 7-hydroylase in man, rat, and mouse. Biochem. Pharmacol. 37:3889–3895 (1988)

    Google Scholar 

  35. J. S. Miles, A. W. McLaren, L. M. Forester, M. J. Glancey, M. A. Lang, and C. R. Wolf. Identification of the human liver cytochromes P-450 responsible for coumarin 7-hydroxylase activity. Biochem. J. 267:365–371 (1990).

    Google Scholar 

  36. T. Aoyama, S. Yamano, P. S. Guzelian, H. V. Gelboin, and F. J. Gonzalez. Five of 12 forms of vaccinia virus-expressed human cytochrome P450 metabolically activate aflatoxin B1. Proc. Natl. Acad. Sci. U.S.A. 87:4790–4793 (1990).

    Google Scholar 

  37. C. Crespi, B. W. Penman, J. A. E. Leakey, M. P. Arlotto, A. Stark, A. Parkinson, T. Turner, D. T. Steimel, K. Rudo, R. L. Davies, and R. Langenbach. Human cytochrome P450IIA3: cDNA sequence, role of the enzyme in the metabolic activation of promutagens, comparison to nitrosamine activation by human cytochrome P450IIE1. Carcinogenesis 11:1293–1300 (1990)

    Google Scholar 

  38. C. L. Crespi, B. W. Penman, H. V. Gelboin, and F. J. Gonzalez. A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic cytochrome P4502D6. Carcinogenesis 12:1197–1201 (1991).

    Google Scholar 

  39. H. Yamazaki, Y. Inui, C. H. Yun, F. P. Guengerich, and T. Shimada. Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nirtosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis 13:1789–1794 (1992).

    Google Scholar 

  40. S. Cholerton, M. E. Idle, A. Vas, F. J. Gonzalez, and J. R. Idle. Comparison of a novel thin-layer chromatographic-fluorescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine. J. Chromatogr. 575:325–330 (1992).

    Google Scholar 

  41. A. Rautio, H. Kraul, A. Kojo, E. Salmela, and O. Pelkonen. Interindividual variation of coumarin 7-hydroxylase in healthy volunteers. Pharmacogenetics 2:227–233 (1992)

    Google Scholar 

  42. M. Maurice, L. Pichard, M. Daujat, I. Fabre, H. Joyeux, J. Domergue, and P. Maurel. Effects of imidazole derivatives on cytochromes P450 form human hepatocytes in primary culture. FASEB J. 6:752–759 (1990).

    Google Scholar 

  43. T. K. H. Chang and D. J. Waxman. The CYP2A subfamily. In C. Ioannides (ed.), Cytochromes P450, metabolic and toxicological aspects, CRC Press, New York, 1996, pp. 99–134.

    Google Scholar 

  44. P. Fernadez-Salguero and F. J. Gonzalez. The CYP2A gene subfamily: species differences, regulation, catalytic activities and role in chemical carcinogenesis. Pharamacogenetics 5:S123–S128 (1995).

    Google Scholar 

  45. S. Yamano, J. Tatsuno, and F. J. Gonzalez. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29:1322–1329 (1990).

    Google Scholar 

  46. P. Fernandez-Salguero, S. M. G. Hoffman, S. Cholerton, H. Mohrenweiser, H. Raunio, A. Rautio, O. Pelkonen, J.-D. Huang, W. E. Evans, J. R. Idle, and F. J. Gonzalez. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 57:651–660 (1995).

    Google Scholar 

  47. K. Nunoya, T. Yokoi, K. Itoh, S. Itoh, K. Kimura, and T. Kamataki. S-Oxidation of (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride by hepatic rat flavin-containing monooxygenase 1 expressed in yeast. Xenobiotica 25:1283–1291 (1995).

    Google Scholar 

  48. K. Nunoya, T. Yokoi, K. Kimura, T. Kodama, M. Funayama, K. Inoue, K. Nagashima, Y. Funae, N. Schimada, C. Green, and T. Kamataki. (+)-Cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes. J. Pharmacol. Exp. Ther. 277:768–774 (1996).

    Google Scholar 

  49. G. A. Kyerematen and E. S. Vesell. Metabolism of nicotine. Drug Metab. Rev. 23:3–41 (1991).

    Google Scholar 

  50. P. Jacob, III, N. L. Benowitz, and A. T. Shulgins. Recent studies of nicotine metabolism in humans. Pharmacol. Biochem. Behav. 30:249–253 (1988).

    Google Scholar 

  51. S. Cholerton, A. Arpanahi, N. McCracken, C. Boustead, H. Taber, E. Johnstone, J. Leathart, A. K. Daly, and J. R. Idle. Poor metabolisers of nicotine and CYP2D6 polymorphism. Lancet 343:62–63 (1994).

    Google Scholar 

  52. N. L. Benowitz, P. Jacob, III, and D. P. L. Sachs. Deficient C-oxidation of nicotine. Clin. Pharmacol. Ther. 57:590–594 (1995).

    Google Scholar 

  53. M. Nakajima, T. Yamamoto, K. Nunoya, T. Yokoi, K. Nagashima, K. Inoue, Y. Funae, N. Shimada, T. Kamataki, and Y. Kuroiwa. Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab. Dispos. 24:1212–1217 (1996)

    Google Scholar 

  54. M. Nakajima, T. Yamamoto, K. Nunoya, T. Yokoi, K. Nagashima, K. Inoue, Y. Funae, N. Shimada, T. Kamataki, and Y. Kuroiwa. Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes. J. Pharmacol. Exp. Ther. 277:1010–1015 (1996).

    Google Scholar 

  55. K. Nunoya, T. Yokoi, K. Kimura, K. Inoue, T. Kodama, M. Funayama, K. Nagashima, Y. Funae, C. Green, M. Kinoshita, and T. Kamataki. A new deleted allele in human cytochrome P450 2A6 gene (CYP2A6) causing poor capacity to metabolize (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochroride (SM-12502) in human liver microsomes. Pharmacogenetics, in press.

  56. D. Hoffman and S. S. Hecht. Nicotine-derived N-nitrosoamines and tobacco-related cancer: current status and future directions. Cancer Res. 45:935–944 (1985).

    Google Scholar 

  57. A. Gaedigk, M. Blum, R. Gaedigk, M. Eichelbaum, and U. A. Mayer. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am. J. Hum. Genet. 48:943–950 (1991)

    Google Scholar 

  58. V. M. Steen, A. Molven, N. K. Aarskog, and A.-K. Gulbrandsen. Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of the human cytochrome P450 CYP2D6 gene. Hum. Mol. Genet. 4:2251–2257 (1995).

    Google Scholar 

  59. D. Egans, R. O'Kennedy, E. Moran, D. Cox, E. Prosser, and R. D. Thornes. The pharmacology, metabolism, analysis, and 2 applications of coumarin and coumarin-related compounds. Drug. Metab. Rev. 22:503–529 (1990).

    Google Scholar 

  60. N. Imanishi, M. Murakami-Uchida, H. Koike, Y. Natsume, and S. Morooka. Biological effects of the new platelet-activating factor receptor antagonist (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride. Arzneim.-Forsh./Drug Res. 44:317–322 (1994)

    Google Scholar 

  61. C.-H. Yun, T. Shimada, and F. P. Guengerich. Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol. Pharmacol. 40:679–685 (1991).

    Google Scholar 

  62. J. Maenpaa, H. Sigusch, H. Raunio, T. Syngelma, P. Vuorela, H. Vuorela, and O. Pelkonen. Differential inhibition of coumarin 7-hydroxylase activity in mouse and human liver microsomes. Biochem. Pharmacol. 45:1035–1042 (1993).

    Google Scholar 

  63. A. M. Camus, O. Geneste, P. Honkakoski, J. C. Bereziat, C. J. Henderson, C. R. Wolf, H. Bartsch, and M. A. Lang. High variability of nitrosamine metabolism among individuals: role of cytochromes P450 2A6 and 2E1 in the dealkylation of N-nitrosodimethylamine and N-nitrosodiethylamine in mice and humans. Mol. Carcinog. 7:268–275 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoi, T., Kamataki, T. Genetic Polymorphism of Drug Metabolizing Enzymes: New Mutations in CYP2D6 and CYP2A6 Genes in Japanese. Pharm Res 15, 517–524 (1998). https://doi.org/10.1023/A:1011913407147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011913407147

Navigation