Skip to main content
Log in

Drug Exsorption from Blood into the Gastrointestinal Tract

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Drugs are exsorbed from the blood across the gastrointestinal membranes by passive or active processes. In the case of a passive transport mechanism, the exsorption of drugs depends on the concentration gradients between the serosal and mucosal sides. The extent of secretion (exsorption) is determined by numerous factors such as extent of binding to serum proteins, distribution volume, lipophilicity, pKa and molecular size of drugs, and the blood flow rate in the gut. Specific transport systems such as P-glycoprotein (P-gp), organic cation and organic anion transporters are found to be involved in active intestinal secretion of drugs. Intestinal secretory transport systems reduce the extent of drug absorption sometimes resulting in low oral bioavailability. It is, therefore, important to know whether poor drug absorption is due to the involvement of specialized secretory transport systems. Modulation of intestinal secretory transport can be a means to enhance absorption of drugs with low oral bioavailability if exsorption of drugs is based on active secretion pathways that are open for control from the "outside.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. Lennernäs and C. G. Regardh. Dose-dependent intestinal absorption and significant intestinal excretion (exsorption) of the beta-blocker pafenolol in the rat. Pharm. Res. 10:727–731 (1993).

    Article  PubMed  Google Scholar 

  2. A. B. Suttle and K. L. Brouwer. Gastrointestinal transit and distribution of ranitidine in the rat. Pharm. Res. 12:1316–1322 (1995).

    Article  PubMed  Google Scholar 

  3. B. L. Leu and J. D. Huang. Inhibition of intestinal P-glycoprotein and effects on etoposide absorption. Cancer Chemother. Pharmacol. 35:432–436 (1995).

    PubMed  Google Scholar 

  4. H. Saitoh, C. Gerard, and B. J. Aungst. The secretory intestinal transport of some beta-lactam antibiotics and anionic compounds: a mechanism contributing to poor oral absorption. J. Pharmacol. Exp. Ther. 278:205–211 (1996).

    PubMed  Google Scholar 

  5. S. F. Su and J. D. Huang. Inhibition of the intestinal digoxin absorption and exsorption by quinidine. Drug Metab. Dispos. 24:142–147 (1996).

    PubMed  Google Scholar 

  6. T. Koudriakova, E. Iatsimirskaia, S. Tulebaev, D. Spetie, I. Utkin, T. Mullet, D. Thompson, P. Vouros, and N. Gerber. In vivo disposition and metabolism by liver and enterocyte microsomes of the antitubercular drug rifabutin in rats. J. Pharmacol. Exp. Ther. 279:1300–1309 (1996).

    PubMed  Google Scholar 

  7. F. Sörgel and M. Kinzig. Pharmacokinetics of gyrase inhibitors, part 1: Basic chemistry and gastrointestinal disposition. Am. J. Med. 94(Suppl 3A):44S–55S (1993).

    PubMed  Google Scholar 

  8. T. Gramatte, R. Oertel, B. Terhaag, and W. Kirch. Direct demonstration of small intestinal secretion and site-dependent absorption of the β-blocker talinolol in humans. Clin. Pharmacol. Ther. 59:541–549 (1996).

    PubMed  Google Scholar 

  9. S. Hsing, Z. Gatmaitan, and I. M. Arias. The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Gastroenterology 102:879–885 (1992).

    PubMed  Google Scholar 

  10. H. Saitoh and B. J. Aungst. Possible involvement of multiple p-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm. Res., 12:1304–1310 (1995).

    PubMed  Google Scholar 

  11. J. Hunter, B. H. Hirst, and N. L. Sommons. Drug absorption limited by p-glycoprotein-mediated secretary drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743–749 (1993).

    PubMed  Google Scholar 

  12. K. Arimori and M. Nakano. The intestinal dialysis of intravenously administered phenytoin by oral activated charcoal in rats. J. Pharmacobio-dyn. 10:157–165 (1987).

    PubMed  Google Scholar 

  13. Y. Imamura, K. Arimori, M. Sonoda, and H. Ichibagase. Effect of simultaneous administration of drugs on absorption and excretion. XIII. Effect of salicylic acid on the absorption, distribution and elimination of carbutamide in rabbits. Chem. Pharm. Bull. 30:2169–2176 (1982).

    PubMed  Google Scholar 

  14. C. A. Loehry, A. T. R. Axon, P. J. Hilton, R. C. Hider, and B. Creamer. Permeability of the small intestine to substances of different molecular weight. Gut 11:466–470 (1970).

    PubMed  Google Scholar 

  15. M. Tomita, M. Shiga, M. Hayashi, and S. Awazu. Enhancement of colonic drug absorption by the paracellular permeation route, Pharm. Res. 5:341–346 (1988).

    PubMed  Google Scholar 

  16. S. Kitazawa, I. Johno, and H. Ito. Studies on characteristics of drug exsorption across the membrane of rat small intestine. Chem. Pharm. Bull. 25:2812–2820 (1977).

    PubMed  Google Scholar 

  17. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the basic drugs amidopyrine and antipyrine from the jejunum of the rat, Naunyn Schmiedebergs Arch. Pharmacol. 281:175–196 (1974).

    PubMed  Google Scholar 

  18. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the acidic drugs benzoic acid and salicylic acid from the jejunum of the rat, Naunyn Schmiedebergs Arch. Pharmacol. 281:197–217 (1974).

    PubMed  Google Scholar 

  19. R. S. Porter and E. B. Baker. Drug clearance by diarrhea induction, Am. J. Emerg. Med. 3:182–186 (1985).

    PubMed  Google Scholar 

  20. T. K. Young, S. C. Lee, and C. K. Tang. Diarrhea therapy of uremia. Clin. Nephrol. 11:86–91 (1979).

    PubMed  Google Scholar 

  21. J. D. Huang. Role of unstirred water layer in the exsorption of quinidine. J. Pharm. Pharmacol. 42:435–437 (1990).

    PubMed  Google Scholar 

  22. K. Arimori and M. Nakano. Transport of furosemide into the intestinal lumen and the lack of effect of gastrointestinal dialysis by charcoal in rats with acute renal failure. J. Pharmacobio-dyn. 11:1–8 (1988).

    PubMed  Google Scholar 

  23. K. Arimori, K. Wakayama, and M. Nakano. Increased transport of theophylline into gastrointestinal lumen and gastrointestinal dialysis by activated charcoal in rats with hepatic cirrhosis. Chem. Pharm. Bull. 37:3148–3149 (1989).

    PubMed  Google Scholar 

  24. B. J. Aungst and H. Saitoh. Intestinal absorption barriers and transport mechanisms, including secretory transport, for a cyclic peptide, fibrinogen antagonist. Pharm. Res. 13:114–119 (1996).

    PubMed  Google Scholar 

  25. M. E. Cavet, M. West, and N. L. Simmons. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Br. J. Pharmacol. 118:1389–1396 (1996).

    PubMed  Google Scholar 

  26. T. Terao, E. Hisanaga, Y. Sai, I. Tamai, and A. Tsuji. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol. 48:1083–1089 (1996).

    PubMed  Google Scholar 

  27. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    PubMed  Google Scholar 

  28. D. Levêque and F. Jehl. P-glycoprotein and pharmacokinetics. Anticancer Res. 15:331–336 (1995).

    PubMed  Google Scholar 

  29. J. Hunter, B. H. Hirst, and N. L. Simmons. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein. Br. J. Cancer 64:437–444 (1991).

    PubMed  Google Scholar 

  30. P. S. Burton, R. A. Conradi, A. R. Hilgers, and N. F. Ho. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem. Biophys. Res. Commun. 190:760–766 (1993).

    PubMed  Google Scholar 

  31. P. F. Augustijns, T. P. Bradshaw, L. S. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun. 197:360–365 (1993).

    PubMed  Google Scholar 

  32. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells, kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268:14991–14997 (1993).

    PubMed  Google Scholar 

  33. J. Zacherl, G. Hamilton, T. Thalhammer, M. Riegler, E. P. Cosentini, A. Ellinger, G. Bischof, M. Schweitzer, B. Teleky, T. Koperna, and E. Wenzl. Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporin A and SDZ PSC 833 in dependence on extracellular pH, Cancer Chemother. Pharmacol. 34:125–132 (1994).

    PubMed  Google Scholar 

  34. K. Turnheim and F. Lauterbach. Interaction between intestinal absorption and secretion of monoquaternary ammonium compounds in guinea pigs-A concept for the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther. 212:418–424 (1980).

    PubMed  Google Scholar 

  35. Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol., 255:G85–G92 (1988).

    PubMed  Google Scholar 

  36. A. Dutt, L. A. Heath, and J. A. Nelson. P-glycoprotein and organic cation secretion by the mammalian kidney. J. Pharmacol. Exp. Ther. 269:1254–1260 (1994).

    PubMed  Google Scholar 

  37. S. M. Kuo, B. R. Whitby, P. Artursson, and J. A. Ziemniak. The contribution of intestinal secretion to the dose-dependent absorption of celiprolol. Pharm. Res. 11:648–653 (1994).

    PubMed  Google Scholar 

  38. J. Karlsson, S. M. Kuo, J. Ziemniak, and P. Artursson. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: Mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol. 110:1009–1016 (1993).

    PubMed  Google Scholar 

  39. I. A. de Lannoy, G. Koren, J. Klein, J. Charuk, and M. Silverman. Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin. Am. J. Physiol. 263:F613–F622 (1992).

    PubMed  Google Scholar 

  40. S. Ito, G. Koren, P. A. Harper, and M. Silverman. Energy-dependent transport of digoxin across renal tubular cell monolayers (LLCPK1). Can. J. Physiol. Pharmacol. 71:40–47 (1993).

    PubMed  Google Scholar 

  41. N. Okamura, M. Hirai, Y. Tanigawara, K. Tanaka, M. Yasuhara, K. Ueda, T. Komano, and R. Hori. Digoxin-cyclosporin A interaction: Modulation of the multidrug transporter P-glycoprotein in the kidney. J. Pharmacol. Exp. Ther. 266:1614–1619 (1993).

    PubMed  Google Scholar 

  42. A. Mordel, H. Halkin, L. Zulty, S. Almog, and D. Ezra. Quinidine enhances digitalis toxicity at therapeutic serum digoxin levels. Clin. Pharmacol. Ther., 53:457–462 (1993).

    PubMed  Google Scholar 

  43. L. A. Bauer, J. R. Horn, and H. Pettit. Mixed-effect modeling for detection and evaluation of drug interactions: digoxin-quinidine and digoxin-verapamil combinations. Ther. Drug Monit. 18:46–52 (1996).

    PubMed  Google Scholar 

  44. G. O. Kokuwaro. Pharmacokinetic basis of nifedipine-digoxin interaction; a commentary [comment]. East Afr. Med. J. 72:684–687 (1995).

    PubMed  Google Scholar 

  45. I. Tamai, N. Tomizawa, A. Kadowaki, T. Terasaki, K. Nakayama, H. Higashida, and A. Tsuji. Functional expression of intestinal dipeptide/beta-lactam antibiotic transporter in Xenopus laevis oocytes. Biochem. Pharmacol. 48:881–888 (1994).

    PubMed  Google Scholar 

  46. N. F. Ho, P. S. Burton, R. A. Conradi, and C. L. Barsuhn. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell. J. Pharm. Sci. 84:21–27 (1995).

    PubMed  Google Scholar 

  47. N. M. Griffiths, B. H. Hirst, and N. L. Simmons. Active intestinal secretion of the fluoloquinolone antibacterials ciprofloxacin, norfloxacin and perfloxacin; a common secretory pathway? J. Pharmacol. Exp. Ther. 269:496–502 (1994).

    PubMed  Google Scholar 

  48. K. Arimori, H. Kawano, and M. Nakano. Gastrointestinal dialysis of disopyramide in healthy subjects. Int. J. Clin. Pharmacol. Ther. Toxicol. 27:280–284 (1989).

    PubMed  Google Scholar 

  49. G. Levy. Gastrointestinal clearance of drugs with activated charcoal. N. Engl. J. Med. 307:676–678 (1982).

    PubMed  Google Scholar 

  50. A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031–2035 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arimori, K., Nakano, M. Drug Exsorption from Blood into the Gastrointestinal Tract. Pharm Res 15, 371–376 (1998). https://doi.org/10.1023/A:1011959828103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011959828103

Navigation