Skip to main content
Log in

Nonlinear Mixed Effects Modeling of Single Dose and Multiple Dose Data for an Immediate Release (IR) and a Controlled Release (CR) Dosage Form of Alprazolam

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. NONMEM was applied to single dose and multiple dose bioavailability data for an immediate release (IR) and a controlled release (CR) dosage form of alprazolam to acquire additional information from the data which are not easily obtainable by traditional means.

Methods. The objective function value (OBJ) and diagnostic plots were used as measures of goodness of fit of the model to the data. A change in the OBJ value of 7.9 was necessary to show statistical significance (p < 0.005) between two models when the two models differed by 1 parameter.

Results. A two-compartment linear model with first-order absorption and elimination best describes the data. Including a lag time, two different rates of absorption (KAIR and KACR), and bioavailability for the CR relative to the IR dosage form significantly improved the fit of the model to the data. Cigarette smoking was associated with a 100% increase in clearance of alprazolam as compared to non-smokers. The higher residual variability observed in this study, where interoccasion variability (IOV) was not initially modeled, could be explained to a large extent by the presence of significant interoccasion variability (IOV).

Conclusions. Since alprazolam has been suggested to be mainly metabolized by the CYP3A4 isozyme in humans, it appears that tobacco could be an inducer of CYP3A4 and/or alprazolam may be metabolized by other isozyme(s) (specifically, CYP1A1/1A2) that are induced by cigarette smoke. The population pharmacokinetic model approach combined with exploratory graphical data analysis is capable of identifying important covariates from well-controlled 'data rich' Phase I studies early in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. J. Greenblatt and C. E. Wright. Clin. Pharmacokinet. 24:453–471 (1993).

    Google Scholar 

  2. Physicians' Desk Reference ®, 48th Edition, pages 2456–2459 (1994).

  3. P. D. Garzone and P. D. Kroboth. Clin. Pharmacokinet. 16:337–364 (1989).

    Google Scholar 

  4. L. B. Sheiner, B. Rosenberg, and V. V. Marathe. J. Pharmacokinet. Biopharm. 5:445–479 (1977).

    Google Scholar 

  5. A. D. Graves and I. Chang. J. Pharmacokinet. Biopharm. 18:145–160 (1990).

    Google Scholar 

  6. R. Miller and T. M. Ludden. Eur. J. Clin. Pharmacol. 44:231–235 (1993).

    Google Scholar 

  7. N. Kaniwa, N. Aoyagi, H. Ogata, and M. Ishii. J. Pharm. Sci. 79:1116–1120 (1990).

    Google Scholar 

  8. J. C. Fleishaker, J. P. Phillips, M. G. Eller, and R. B. Smith. J. Clin. Pharmacol. 29:543–549 (1989).

    Google Scholar 

  9. S. L. Beal and L. B. Sheiner. NONMEM Users Guide, Part I–VI, Division of Clinical Pharmacology, University of California, San Francisco, 1979–1992.

    Google Scholar 

  10. R. B. Smith and P. D. Kroboth. Psychopharmacol. 93:105–112 (1987).

    Google Scholar 

  11. M. O. Karlsson and L. B. Sheiner. J. Pharmacokinet. Biopharm. 21:735–750 (1993).

    Google Scholar 

  12. P. O. Maitre, M. Buhrer, D. R. Stanski, and D. Thompson. J. Pharmacokinet. Biopharm. 19:377–384 (1991).

    Google Scholar 

  13. J. W. Mandema, D. Verotta, and L. B. Sheiner. J. Pharmacokinet. Biopharm. 20:511–528 (1992).

    Google Scholar 

  14. M. Davidian and A. R. Galant. J. Pharmacokinet. Biopharm. 20:529–556 (1992).

    Google Scholar 

  15. P. Burtin, E. Jacqz-Aigrain, P. Girard, R. Lenclen, J. F. Magny, P. Betremieux, C. Tehiry, L. Desplanques, and P. Mussat. Clin. Pharmacol. Ther. 56:615–625 (1994).

    Google Scholar 

  16. J. R. Wade, S. L. Beal, and N. C. Sambol. J. Pharmacokinet. Biopharm. 22:165–177 (1994).

    Google Scholar 

  17. E. I. Ette and T. M. Ludden. Pharm. Res. 12:1845–1855 (1995).

    Google Scholar 

  18. S-PLUS (version 3.1), Statistical Sciences Inc., Seattle, Washington, 1992.

  19. J. M. Morgan and K. M. Bray. Clin. Pharmacokinet. 26:292–307, 1994.

    Google Scholar 

  20. C. Kirkwood, A. Moore, P. Hayes, C. L. DeVane, and A. Pelonero. Clin. Pharmacol. Ther. 50:404–409 (1991).

    Google Scholar 

  21. R. B. Smith, P. R. Gwilt, and C. E. Wright. Clin. Pharm. 2:139–143 (1983).

    Google Scholar 

  22. L. L. von Moltke, D. G. Greenblatt, M. M. Cotreau-Bibbo, J. S. Harmatz, and R. I. Shader. Br. J. Clin. Pharmac. 38:23–31 (1994).

    Google Scholar 

  23. N. Yasui, K. Otani, S. Kaneko, T. Ohkubo, T. Osanai, K. Sugawara, K. Chiba, and T. Ishizaki. Clin. Pharmacol. Ther. 59:514–519 (1996).

    Google Scholar 

  24. P. H. Villard, E. Seree, B. Lacarelle, M. C. Therene-Fenoglio, Y. Barra, L. Attolini, B. Bruguerole, A. Durand, and J. Catalin. Biochem. Biophys. Res. Comm. 202:1731–1737 (1994).

    Google Scholar 

  25. R. Agrawal, F. K. Jugert, S. G. Khan, D. R. Bickers, H. F. Merk, and H. Mukhtar. Biochem. Biophys. Res. Comm. 199:1400–1406 (1994).

    Google Scholar 

  26. L. G. Miller. Clin. Pharmacokinet. 17:90–108 (1989).

    Google Scholar 

  27. W. Kalow and B. K. Tang. Clin. Pharmacol. Ther. 49:44–48 (1991).

    Google Scholar 

  28. D. Sesardic, A. R. Boobis, R. J. Edwards, and D. S. Davies. Br. J. Clin. Pharmacol. 26:363–372 (1988).

    Google Scholar 

  29. K. Brøsen, E. Skjelbo, B. B. Rasmussen, H. E. Poulsen, and S. Loft. Biochem. Pharmacol. 45:1211–1214 (1993).

    Google Scholar 

  30. B. B. Rasmussen, J. Maenpaa, O. Pelkonen et al. Br. J. Clin. Pharmacol. 39:151–159 (1995).

    Google Scholar 

  31. L. L. von Moltke, D. J. Greenblatt, M. H. Court, S. X. Duan, J. S. Harmatz, and R. I. Shader. J. Clin. Psychopharmacol. 15:125–131 (1995).

    Google Scholar 

  32. J. C. Fleishaker and L. K. Hulst. Eur. J. Clin. Pharmacol. 46:35–39 (1994).

    Google Scholar 

  33. P. Periti, T. Mazzei, E. Mini, and A. Novelli. Clin. Pharmacokinet. 23:106–131 (1992).

    Google Scholar 

  34. M. A. Sarkar and B. J. Jackson. Drug Metab. Dispos. 22:827–834 (1994).

    Google Scholar 

  35. S. A. Wrighton and J. C. Stevens. Crit. Rev. Toxicol. 22:1–21 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M., Wright, E., Baweja, R. et al. Nonlinear Mixed Effects Modeling of Single Dose and Multiple Dose Data for an Immediate Release (IR) and a Controlled Release (CR) Dosage Form of Alprazolam. Pharm Res 14, 309–315 (1997). https://doi.org/10.1023/A:1012041920119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012041920119

Navigation