Skip to main content
Log in

Selegiline Percutaneous Absorption in Various Species and Metabolism by Human Skin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A Selegiline Transdermal System (STS) is under development for indications which may not be optimally or safely treated with oral selegiline. Studies were conducted to evaluate the in vitro penetration and skin metabolism of selegiline in order to better understand the toxicological findings and the observed plasma levels of selegiline and its metabolites in animals and man.

Methods. In vitro penetration studies were conducted in four different species (male hairless mice, male and female rats, female dog and male Micropig® and compared to human skin. In another study, viable human skin was used to estimate the extent of metabolism of selegiline by human skin using Franz diffusion cells.

Results. Results indicated that female dog and male Micropig® skin were reasonable animal models for 24 hour in vitro selegiline penetration through human skin. Penetration of selegiline through rat skin and hairless mouse skin was 2-fold and 3-fold higher than through human skin, respectively. Metabolism was negligible in human skin. Selegiline metabolites (L-methamphetamine and N-desmethylselegiline but not L-amphetamine) were detected at all time points but the extent of selegiline metabolism was negligible. The cumulative 24 hour in vitro selegiline permeation from a 1.83 mg/cm2 STS through human skin was 5.0 mg. This was similar to the in vivo permeation in humans as assessed by residual patch analysis.

Conclusions. The similarity of dog and human skin permeation results support the use of the dog as a species for evaluating the toxicology of transdermally-administered selegiline. Selegiline is not metabolized cutaneously and hence the metabolic profile following STS administration is likely due to hepatic metabolism only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. S. Barrett, T. J. Hochadel, R. J. Morales, S. Rohatagi, K. E. DeWitt, and A. R. DiSanto. Pharmacokinetics and safety of a transdermal system relative to single dose oral administration in the elderly. Am. J. Ther. 3:688–698 (1996).

    PubMed  Google Scholar 

  2. J. S. Barrett, S. Rohatagi, K. E. DeWitt, and R. J. Morales. Clin. Pharmacol. Ther. 59:PIII-75 (1996).

    Google Scholar 

  3. M. D. Berry, A. V. Juorio, and L. A. Paterson. Prog. in Neurobiology 44:141–161 (1994).

    Google Scholar 

  4. P. T. Solo and W. G. Tatton. J. Neuroscience Res. 31:394–400 (1992).

    Google Scholar 

  5. P. Chrisp, G. J. Mammen, and E. M. Sorkin. Drugs and Aging 1(3):228–248 (1991).

    PubMed  Google Scholar 

  6. P. Vezina, E. Mohr, and D. Grimes. Can. J. Neurol. Sci. 19:142–146 (1992).

    PubMed  Google Scholar 

  7. C. Oh, B. Murray, N. Bhattacharya, and W. G. Tatton. J. Neuroscience Res. 38:64–74 (1994).

    Google Scholar 

  8. T. Sunderland, R. M. Cohen, S. Molchan, B. A. Lawlor, A. M. Mellow, P. A. Newhouse, P. N. Tariot, E. A. Mueller, and D. L. Murphy. Arch. Gen. Psychiatry 51:607–615 (1994).

    PubMed  Google Scholar 

  9. J. S. Barrett, T. Hochadel, S. Rohatagi, K. E. DeWitt, S. Watson, and A. R. DiSanto. Pharm. Res. 13:S-112 (1996).

    Google Scholar 

  10. U. Täuber. In J. Hadgraft, and R. H. Guy (eds.), Transdermal Drug Delivery, Developmental Issues and Research Initiatives, Marcel Dekker, New York, 1989, pp. 99–122.

    Google Scholar 

  11. L. L. Hall and P. V. Shah. In B. W. Kemppainen and W. G. Reifenrath (eds.), Methods for Skin Absorption, CRC Press, Boca Raton, 1990, pp. 100–109.

    Google Scholar 

  12. T. Yoshida, Y. Yamada, T. Yamamoto, and I. Kuroiwa. Xenobiotica 6:29–136 (1986).

    Google Scholar 

  13. J. M. Grace, M. T. Kinter, and T. L. Macdonald. Chem. Res. Toxicol. 7(3):286–290 (1994).

    PubMed  Google Scholar 

  14. J. Kao, J. Hall, and J. M. Holland. Toxicol. Appl. Pham. 68:206–217 (1983).

    Google Scholar 

  15. S. W. Collier, J. E. Storm, and R. L. Bronaugh. In: R. L. Bronaugh and H. I. Maibach (eds.), In Vitro Percutaneous Absorption: Principles, Fundamentals, and Applications, CRC Press, Boca Raton, 1991, pp. 67–83.

    Google Scholar 

  16. Log P, ACD, Advanced Chemistry Development, Toronto, Ontario, Canada (Version 1.0), 1995.

  17. J. S. Barrett, A. R. DiSanto, P. J. Thomford, E. M. Larsen, M. J. Palazzolo, and R. J. Morales. Toxicokinetic evaluation of a selegiline transdermal system in the dog. Biophar. Drug. Disp. (1996) (accepted for Publication).

  18. S. Rohatagi, J. S. Barrett, K. E. DeWitt, and R. J. Morales. Pharm Res. 13:S502 (1996).

    Google Scholar 

  19. D. R. Friend. J. Cont. Rel. 18:235–248 (1992).

    Google Scholar 

  20. R. C. Wester and P. K. Noonan. Int. J. Pharm. 7:99–110 (1980).

    Google Scholar 

  21. J. R. Bond and B. W. Barry. J. Invest. Dermatol. 90:810–813 (1988).

    PubMed  Google Scholar 

  22. C. Surber, K. Wilhem, and H. I. Maibach. J. Pharm. Pharmacol. 43:836–840 (1991).

    PubMed  Google Scholar 

  23. N. Higo, R. S. Hinz, D. T. W. Lau, L. Z. Benet, and R. H. Guy. Pharm. Res. 9:187–190 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohatagi, S., Barrett, J.S., McDonald, L.J. et al. Selegiline Percutaneous Absorption in Various Species and Metabolism by Human Skin. Pharm Res 14, 50–55 (1997). https://doi.org/10.1023/A:1012051300130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012051300130

Navigation