Skip to main content
Log in

Hepatic Distribution and Clearance of Antisense Oligonucleotides in the Isolated Perfused Rat Liver

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study was conducted to investigate the impact of backbone modifications on the hepatobiliary disposition of oligonucleotides.

Methods. The disposition of backbone-modified antisense oligonucleotides [phosphorothioate (PS) and methylphosphonate (MP)] of the same base-length and sequence (5′-TAC-GCC-AAC-AGC-TCC-3′), complementary to the codon 12 activating mutation of Ki-ras, was investigated in the isolated perfused rat liver. Livers were perfused for 2 hr; perfusate and bile concentrations were analyzed by HPLC. Hepatocellular distribution was examined by measuring the amount of radiolabeled PS oligonucleotide associated with hepatocytes and Kupffer cells. Protein binding of the PS and MP oligonucleotides was determined in rat serum by ultrafiltration.

Results. MP oligonucleotide perfusate concentrations remained constant during the 2-hour perfusion. In contrast, PS oligonucleotide was eliminated slowly by the isolated perfused liver [Cl = 1.05 ± 0.21 mL/min; extraction ratio = 0.06 ± 0.01]. Uptake of PS oligonucleotide by Kupffer cells appeared to exceed uptake by hepatocytes, based on standard cell separation techniques as well as confocal microscopy. The degree of protein binding in rat serum was greater for the PS oligonucleotide (79.9 ± 2.2%) than for the MP oligonucleotide (53.0 ± 4.7%).

Conclusions. Backbone modifications significantly influence the hepatic clearance of oligonucleotides. Uncharged MP oligonucleotides are not extracted by the isolated perfused rat liver, whereas the charged PS oligonucleotide is processed more readily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Goodchild, S. Agrawal, M. P. Civeira, Ps. Sarin, D. Sun, and P. C. Zamecnik. Proc Natl Acad Sci 85:5507–5511 (1988).

    Google Scholar 

  2. S. T. Crooke. Ann Rev Pharmacol Toxicol 32:329–376 (1992).

    Google Scholar 

  3. J. S. Cohen. Pharmacol Ther 52:211–225 (1992).

    Google Scholar 

  4. P. A. Cossum, H. Sasmor, D. Dellinger, L. Truong, L. Cummins, S. R. Owens, P. M. Markham, J. P. Shea, and S. Crooke. J Pharmacol Exp Ther 267:1181–1190 (1993).

    Google Scholar 

  5. R. Zhang, J. Y. Yan, H. Shahinian, G. Amin, Z. Lu, T. Liu, M. S. Saag, Z. Jiang, J. Temsamani, R. R. Martin, P. J. Schlechter, S. Agrawal, and R. B. Diasio. Clin Pharmacol Ther 58:44–53 (1995).

    Google Scholar 

  6. R. Zhang, H. Lu, H. Zhao, X. Zhang, R. D. Diasio, I. Habus, Z. Jiang, R. P. Iyer, D. Yu, and S. Agrawal. Biochem Pharmacol 50:545–556 (1995).

    Google Scholar 

  7. S. Agrawal, J. Temsamani, W. Galbraith, and J. Tang. Clin Pharmacol 28:7–16 (1995).

    Google Scholar 

  8. R. K. Delong, A. Nolting, M. H. Fisher, Q. Chen, E. Wickstrom, M. Kligshteyn, S. Demirdij, M. Caruthers, and R. Juliano, in press. Anti Res Nucl Acid Drug Develop (1997).

  9. J. A. Hughes, A. V. Avrutskaya, K. L. R. Brouwer, E. Wickstrom, and R. L. Juliano. Pharm Res 12:817–24 (1995).

    Google Scholar 

  10. S. Agrawal, X. Zhang, Z. Lu, H. Zho, J. M. Tamburin, J. Uan, H. Cai, R. B. Diasio, I. Habus, Z. Jiang, R. P. Iyer, D. Yu, and R. Zhang. Biochem Pharmacol 50:571–576 (1995).

    Google Scholar 

  11. C. Almoguera, D. Shibata, K. Forrester, J. Martin, Arnheim, and M. Perucho. Cell 53:549–554 (1988).

    Google Scholar 

  12. S. Agrawal and S Goodchild. Tetrahedon Lett 28:3539–3542 (1987).

    Google Scholar 

  13. J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  14. K. L. R. Brouwer and R. G. Thurman. in R. T. Borchardt, P. L. Smith, and G. Wilson (eds.), Models for Assessing Drug Absorption and Metabolism, Plenum Press, New York, 1996, pp. 161–193.

    Google Scholar 

  15. R. L. Hamilton, M. N. Berry, M. C. Williams, and E. M. Severinghaus. J Lipid Res 15:182–186 (1974).

    Google Scholar 

  16. M. Gibaldi and D. Perrier. Pharmacokinetics, Second Edition, Marcel Dekker, Inc. New York and Basel, 1982.

    Google Scholar 

  17. H. Pertoft and B. Smedsrod. In T. P. Pretlow (ed.) Cell Separation: Method and Selected Applications. Vol 4., Academic Press New York, 1987, pp. 1–24.

    Google Scholar 

  18. J. G. Zendegui, K. M. Vasquez, J. J. Tinsley, D. J. Kessler, and M. E. Hogan. Nucl Acids Res 20:307–14 (1992).

    Google Scholar 

  19. R. Zhang, Z. Lu, X. Zhang, H. Zhao, R. B. Diasio, T. Liu, Z. Jiang, and S. Agrawal. Clin Chem 41:836–843 (1995).

    Google Scholar 

  20. H. Sands, L. J. Gorey-Feret, A. J. Cocuzza, F. W. Hobbs, D. Chidester, and G. L. Trainor. Molec Pharmacol 45:932–943 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. R. Brouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolting, A., DeLong, R.K., Fisher, M.H. et al. Hepatic Distribution and Clearance of Antisense Oligonucleotides in the Isolated Perfused Rat Liver. Pharm Res 14, 516–521 (1997). https://doi.org/10.1023/A:1012116003706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012116003706

Navigation