Skip to main content
Log in

Evaluation of “True” Creatinine Clearance in Rats Reveals Extensive Renal Secretion

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The renal clearance of endogenous creatinine is widely used to assess glomerular filtration rate (GFR) and renal function in animal investigations. The objective of the present investigation was to evaluate the extent of renal secretion of endogenous creatinine in rats and the effect of probenecid, the classical inhibitor of organic anion transport, on creatinine clearance. Ten female Lewis rats received 3H-inulin (5-µCi i.v. bolus followed by 5 µCi/hr) throughout a 6-hr period. Three hours after initiation of the inulin infusion, probenecid was administered (92.4-mg/kg i.v. bolus followed by 0.59 mg/min/kg). Steady-state serum concentrations of about 500 µg/ml probenecid were achieved. Renal clearance was assessed between 1 and 3 hr (control) and between 4 and 6 hr (probenecid treatment). A preliminary study in seven rats demonstrated no time-dependent change in inulin or creatinine clearance between these two study intervals. Creatinine clearances were determined by an alkaline picrate assay which incorporated Fuller's earth (Lloyd reagent) to remove interfering noncreatinine chromogens from serum samples and these values were compared with those using a nonspecific picrate assay. “True” clearance ratios of creatinine to inulin (CLcr/ CLin) were greater than unity (2.33 ± 0.83, mean ± SD) and were significantly decreased after probenecid treatment (1.26 ± 0.28, P < 0.01). Probenecid had no effect on GFR, as assessed by inulin clearance. Using the nonspecific picrate assay, CLcr/CLin was 1.12 ± 0.41, which was not significantly different from unity and which decreased to 0.53 ± 0.12 after probenecid treatment. Therefore, creatinine undergoes extensive renal secretion in female Lewis rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. H. Bauer, C. S. Brooks, and R. N. Burch. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am. J. Kidney Dis. 2:337–346 (1982).

    Google Scholar 

  2. A. S. Levey, R. D. Perrone, and N. E. Madias. Serum creatinine and renal function. Annu. Rev. Med. 39:465–490 (1988).

    Google Scholar 

  3. S. Narayanan and H. D. Appleton. Creatinine: A review. Clin. Chem. 26:1119–1126 (1980).

    Google Scholar 

  4. M. H. Meyer, R. A. Meyer, Jr., R. W. Gray, and R. L. Irwin. Picric acid methods greatly overestimate serum creatinine in mice: More accurate results with high-performance liquid chromatography. Anal. Biochem. 144:285–290 (1985).

    Google Scholar 

  5. D. C. Houghton, J. English, and W. M. Bennett. Chronic tubulointerstitial nephritis and renal insufficiency associated with long-term “subtherapeutic” gentamicin. J. Lab. Clin. Med. 112:694–703 (1988).

    Google Scholar 

  6. U. F. Michael, J. Kelley, and C. A. Vaamonde. Effects of aldosterone, methylprednisolone and triiodothyronine on the response to water loading in the conscious hypothyroid rat with diabetes insipidus. Mineral Electrolyte Metab. 10:190–198 (1984).

    Google Scholar 

  7. P. Namnum, K. Insogna, D. Baggish, and J. P. Hayslett. Evidence for bidirectional net movement of creatinine in the rat kidney. Am. J. Physiol. 244:F719–F723 (1983).

    Google Scholar 

  8. G. Peters. Glomeruläre clearancen, p-aminohippursäureclearance und diurese bei verschiedenen diureseformen der nicht narkotisierten ratte. Naunyn-Schmied. Arch. Exp. Path. Pharmakol. 235:113–142 (1959).

    Google Scholar 

  9. L. Glasser. Renal excretion of creatinine in the rat. Am. J. Physiol. 200:167–169 (1961).

    Google Scholar 

  10. A. M. Harvey and R. L. Malvin. Comparison of creatinine and inulin clearances in male and female rats. Am. J. Physiol. 209:849–852 (1965).

    Google Scholar 

  11. M. Friedman. The creatinine, inulin and hippurate clearance in the rat. Am. J. Physiol. 148:387–391 (1947).

    Google Scholar 

  12. E. Fingl. Tubular excretion of creatinine in the rat. Am. J. Physiol. 169:357–361 (1952).

    Google Scholar 

  13. B.-M. Emanuelsson and L. K. Paalzow. Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm. Drug Disp. 9:59–70 (1988).

    Google Scholar 

  14. D. Heinegard and G. Tiderstrom. Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta 43:305-310 (1973).

    Google Scholar 

  15. R. Haeckel. Assay of creatinine in serum, with use of Fuller's earth to remove interferents. Clin. Chem. 27:179–183 (1981).

    Google Scholar 

  16. K. S. Bjerve, J. Egense, L.-M. Lampinen, and P. Masson. Evaluation of several creatinine methods in search of a suitable secondary reference method: Report from the subcommittee on reference method for creatinine, Nordic Society for Clinical Chemistry. Scand. J. Clin. Lab. Invest. 48:365–373 (1988).

    Google Scholar 

  17. R. K. Harle and T. Cowen. Determination of probenecid in serum by high performance liquid chromatography. Analyst 103:492–496 (1978).

    Google Scholar 

  18. R. F. Pitts. Physiology of the Kidney and Body Fluids, Year Book, Chicago, 1968, pp. 62–70.

    Google Scholar 

  19. Y. Gutman, C. W. Gottschalk, and W. E. Lassiter. Micropuncture study of inulin absorption in the rat. Science 147:753–754 (1965).

    Google Scholar 

  20. B. J. Carrie, H. V. Golbetz, A. S. Michaels, and B. D. Myers. Creatinine: An inadequate filtration marker in glomerular diseases. Am. J. Med. 69:177–182, 1980.

    Google Scholar 

  21. W. L. Chiou. Creatinine XI. Extensive renal tubular reabsorption and secretion in man and its clinical significance. Res. Commun. Chem. Pathol. Pharmacol. 36:349–352 (1982).

    Google Scholar 

  22. S. T. Wolford, R. A. Schroer, F. X. Gohs, P. P. Gallo, M. Brodeck, H. B. Falk, and R. Ruhren. Reference range data base for serum chemistry and hematology values in laboratory animals. J. Toxicol. Environ. Health 18:161–188 (1986).

    Google Scholar 

  23. H. R. Lam and F. Tarding. Specific high-performance liquid chromatographic method for the determination of creatinine in rat plasma. J. Chromatogr. 426:358–364 (1988).

    Google Scholar 

  24. S. V. Shah and P. D. Walker. Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am. J. Physiol. 255:F438–F443 (1988).

    Google Scholar 

  25. M. J. Radin, W. L. Wilke, and M. J. Fettman. Dose effect of captopril on renal hemodynamics and proteinuria in conscious, partially nephrectomized rats. Proc. Soc. Exp. Biol. Med. 190:294–300 (1989).

    Google Scholar 

  26. B. Odlind, R. Hällgren, M. Sohtell, and B. Lindström. Is 125I-iothalamate an ideal marker for glomerular filtration? Kidney Int. 27:9–16 (1985).

    Google Scholar 

  27. A. K. Grzybowski and S. P. Datta. The ionisation constant of the protonated form of creatinine. J. Chem. Soc. 187–196 (1964).

  28. B. R. Rennick. Transport mechanisms for renal tubular excretion of creatinine in the chicken. Am. J. Physiol. 212:1131–1134 (1967).

    Google Scholar 

  29. J. M. B. O'Connell, J. A. Romeo, and G. H. Mudge. Renal tubular secretion of creatinine in the dog. Am. J. Physiol. 203:985–990 (1962).

    Google Scholar 

  30. H. Bucht. On the tubular excretion of thiosulphate and creatinine under the influence of caronamide. Scand. J. Clin. Lab. Invest. 1:270–276 (1949).

    Google Scholar 

  31. B. Crawford. Depression of the exogenous creatinine/inulin or thiosulfate clearance ratios in man by diodrast and p-aminohippuric acid. J. Clin. Invest. 27:171–175 (1948).

    Google Scholar 

  32. F. Berglund, J. Killander, and R. Pompeius. Effect of trimethoprim-sulfamethoxazole on the renal excretion of creatinine in man. J. Urol. 114:802–808 (1975).

    Google Scholar 

  33. N. V. Olsen, S. D. Ladefoged, B. Feldt-Rasmussen, N. Fogh-Andersen, H. Jordening, and O. Munck. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients. Scand. J. Clin. Lab. Invest. 49:155–159 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, I.M., Morris, M.E. Evaluation of “True” Creatinine Clearance in Rats Reveals Extensive Renal Secretion. Pharm Res 8, 1318–1322 (1991). https://doi.org/10.1023/A:1015820316660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015820316660

Navigation