Skip to main content
Log in

Analysis of Zidovudine Distribution to Specific Regions in Rabbit Brain Using Microdialysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The distribution of zidovudine (3′-azido-3′-deoxythymidine; AZT) into two regions of rabbit brain was investigated in crossover using microdialysis. Six rabbits had guide cannulas surgically implanted in the lateral ventricle and thalamus by stereotaxic placement. After recovery, microdialysis probes were positioned and i.v. bolus doses of 5, 10, 20, and 30 mg/kg were administered to each animal over a period of 2 weeks. Blood was drawn via a marginal ear vein catheter for 8 hr. Brain dialysate was collected at 3 µl/min from ventricle and thalamus dialysis probes every 10 min. Simulated cerebrospinal fluid (CSF), to which 3′-azido-2′,3′-dideoxyuridine (AZdU) was added, was used as perfusate. AZdU loss, which was measured during simultaneous retrodialysis, served as a marker for in vivo recovery of AZT. AZT concentrations in plasma, as well as in ventricle and thalamus dialysate, were determined using a sensitive HPLC assay, and AZdU was simultaneously analyzed in the dialysates. Calculation of in vivo recovery of AZT was based on loss of AZdU from the perfusate during retrodialysis and was used to estimate the concentration of drug at both sites in the brain. In vitro loss of AZdU and recovery of AZT showed good agreement, demonstrating a bivariate regression slope of 0.99. The half-lives and AUCs (normalized to dose) achieved in the plasma, ventricle, or thalamus were not significantly different for the four doses. The AUC ratios, which represent the ratio of clearances into and from the CNS, were not significantly different among the doses studied (AUCv/AUCp range, 0.16–0.19; AUCt/AUCp range, 0.05–0.09), providing further evidence that the kinetics of distribution into the thalamus and CSF are linear. The results also demonstrate that the time-averaged concentrations of AZT in thalamus ECF are about half of those in the CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. M. Barnes. Promising results halt trial of anti-AIDS drug. Science 234:15–16 (1986).

    Google Scholar 

  2. P. S. Gill, M. Rarick, R. K. Brynes, D. Causey, C. Loureiro, and A. M. Levine. Azidothymidine associated with bone marrow failure in the acquired immunodeficiency syndrome (AIDS). Ann. Intern. Med. 107:502–505 (1987).

    Google Scholar 

  3. S. L. Nightingale. Lower dosage for zidovudine: Revised labeling. JAMA 263:1476 (1990).

    Google Scholar 

  4. L. G. Epstein and L. R. Sharer. Neurology of human immunodeficiency virus infection in children. In M. L. Rosenblum, R. M. Levy, and D. E. Bredesen (eds.), AIDS and the Nervous System, Raven Press, New York, 1988, pp. 79–101.

    Google Scholar 

  5. R. W. Price, B. Brew, J. Sidtis, M. Rosenblum, A. C. Scheck, and P. Cleary. The brain in AIDS: Central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592 (1988).

    Google Scholar 

  6. H. Budka. Multinucleated giant cells in brain: A hall mark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol. 69:253–258 (1986).

    Google Scholar 

  7. L. R. Sharer, E.-S. Cho, and L. G. Epstein. Multinucleated giant cells and HTLV-III in AIDS encephalopathy. Hum. Pathol. 16:760 (1985).

    Google Scholar 

  8. J. Michaels, L. R. Sharer, and L. G. Epstein. Human immunodeficiency virus type 1 (HIV-1) infection of the nervous system: a review. Immunodef. Rev. 1:71–104 (1988).

    Google Scholar 

  9. B. A. Navia, E. S. Cho, C. K. Petito, and R. W. Price. The AIDS dementia complex. II. Neuropathology. Ann. Neurol. 19:525–535 (1986).

    Google Scholar 

  10. R. A. Hawkins, M. E. Phelps, S.-C. Huang, J. A. Wapenski, P. D. Grimm, R. G. Parker, G. Juillard, and P. Greenberg. A kinetic evaluation of blood-brain barrier permeability in human brain tumors with 68Ga-EDTA and positron computed tomography. J. Cereb. Blood Flow Metab. 4:507–515 (1984).

    Google Scholar 

  11. D. J. Brooks, R. P. Beaney, A. A. Lammertsma, S. Herold, D. R. Turton, S. K. Luthra, R. S. J. Frackowiak, D. G. T. Thomas, J. Marshall, and T. Jones. Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studies using [11C]-3-O-methyl-D-glucose and positron emission tomography. J. Cereb. Blood Flow Metab. 6:230–239 (1986).

    Google Scholar 

  12. U. Ungerstedt and A. Hallstrom. In vivo microdialysis—a new approach to the analysis of neurotransmitters in the brain. Life Sci. 41:861–864 (1987).

    Google Scholar 

  13. H. Benveniste. Short review: Brain dialysis. J. Neurochem. 52:1667–1679 (1989).

    Google Scholar 

  14. K. M. Kendrick. Use of microdialysis in neuroendocrinology. Methods Enzymol. 168:182–197 (1989).

    Google Scholar 

  15. K. E. Sabol and C. R. Freed. Brain acetaminophen measurement by in vivo dialysis, in vivo electrochemistry and tissue assay: A study of the dialysis technique in the rat. J. Neurosci. Meth. 24:163–168 (1988).

    Google Scholar 

  16. D. O. Scott, L. R. Sorenson, K. L. Steele, D. L. Puckett, and C. E. Lunte. In vivo microdialysis sampling for pharmacokinetic investigations. Pharm. Res. 8(3):389–392 (1991).

    Google Scholar 

  17. Y. Wang, S. L. Wong, and R. J. Sawchuk. Comparison of in vitro and in vivo calibration of microdialysis probes using retrodialysis. Curr. Separ. 10:87 (1991).

    Google Scholar 

  18. Y. Wang, S. L. Wong, and R. J. Sawchuk. In vitro and in vivo microdialysis calibration using retrodialysis: Application to a study of the distribution of zidovudine to rabbit CSF and thalamus (submitted for publication).

  19. C. H. Sawyer, J. W. Everett, and G. Galand. The rabbit diencephalon in stereotaxic coordinates. J. Comp. Neurol. 101:801–824 (1954).

    Google Scholar 

  20. C. Kozma, W. Macklin, L. M. Cummins, and R. Mauer. The anatomy, physiology, and the biochemistry of the rabbit. In S. H. Weisbroth, R. E. Flatt, and A. L. Kraus (eds.), The Biology of the Laboratory Rabbit, Academic Press, New York, 1974, pp. 49–72.

    Google Scholar 

  21. M. A. Hedaya and R. J. Sawchuk. A sensitive liquid-chromatography method for determination of 3′-azido-3′-deoxythymidine (AZT) in plasma and urine. Clin. Chem. 34:1565–1568 (1988).

    Google Scholar 

  22. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  23. M. A. Hedaya and R. J. Sawchuk. Effect of probenecid on the renal and nonrenal clearances of zidovudine and its distribution into cerebrospinal fluid in the rabbit. J. Pharm. Sci. 78:716–722 (1989).

    Google Scholar 

  24. R. J. Sawchuk and M. A. Hedaya. Modeling the enhanced uptake of zidovudine (AZT) into cerebrospinal fluid. 1. Effect of probenecid. Pharm. Res. 7(4):332–338 (1990).

    Google Scholar 

  25. S. L. Wong, M. A. Hedaya, and R. J. Sawchuk. Competitive inhibition of zidovudine clearance by probenecid during continuous coadministration (submitted for publication).

  26. J. M. Collins, R. W. Klecker Jr., J. A. Kelley, J. S. Roth, C. L. McCully, F. M. Balis, and D. G. Poplack. Pyrimidine dideoxyribonucleosides: Selectively of penetration into cerebrospinal fluid. J. Pharmacol. Exp. Ther. 245(2):466–470 (1988).

    Google Scholar 

  27. T. P. Zimmerman, W. B. Mahony, and K. L. Prus. 3′-Azido-3′deoxythymidine: An unusual nucleoside analogue that permeates the membrane of human erthrocytes and lymophytes by nonfacilitated diffusion. J. Biol. Chem. 262(12):5748–5754 (1987).

    Google Scholar 

  28. M. A. Hedaya, W. F. Elmquist, and R. J. Sawchuk. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm. Res. 7:411–417 (1990).

    Google Scholar 

  29. R. W. Klecker, J. M. Collins, R. Yarchoan, R. Thomas, J. F. Jenkins, S. Broder, and C. E. Myers. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: A novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin. Pharmacol. Ther. 41:407–412 (1987).

    Google Scholar 

  30. P. A. Pizzo, J. Eddy, J. Falloon, F. Balis, R. F. Murphy, H. Moss, P. Wolters, P. Brouwers, P. Jarosinski, M. Rubin, S. Broder, R. Yarchoan, A. Brunetti, M. Maha, S. Lehrman, and D. G. Poplack. Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N. Engl. J. Med. 319:889–896 (1988).

    Google Scholar 

  31. T. Terasaki and W. M. Pardridge. Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood-brain barrier. J. Infect. Dis. 158(3):630–632 (1988).

    Google Scholar 

  32. E. M. Cornford and W. H. Oldendorf. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta 394:211–219 (1975).

    Google Scholar 

  33. R. A. Hawkins, A. L. Miller, J. E. Cremer, and R. L. Veech. J. Neurochem. 23:917–923 (1974).

    Google Scholar 

  34. K. Henry, B. J. Chinnock, R. P. Quinn, C. V. Fletcher, P. de Miranda, and H. H. Balfour, Jr. Concurrent zidovudine levels in semen and serum determined by radioimmunoassay in patients with AIDS or AIDS-related complex. JAMA 259:3023–3026 (1988).

    Google Scholar 

  35. J. M. Gallo, L. N. Clark, and J. T. Rubino. Pump delivery of azidothymidine: Potential for constant concentrations and improved brain delivery. J. Control. Release 9:249–253 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, S.L., Wang, Y. & Sawchuk, R.J. Analysis of Zidovudine Distribution to Specific Regions in Rabbit Brain Using Microdialysis. Pharm Res 9, 332–338 (1992). https://doi.org/10.1023/A:1015834701136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015834701136

Navigation