Skip to main content
Log in

The in Vitro Enzymic Labilities of Chemically Distinct Phosphomonoester Prodrugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The kinetics of decomposition of phosphomonoesters of hydroxy-methyl-5,5-diphenylhydantoin (1), estrone (2), 17β-testosterone (3), 1-phenylvinyl alcohol (4), and 17α-testosterone (5) were studied in rat whole blood at 25 and/or 37°C. As the acidity of the leaving hydroxyl group of the phosphomonoester increased, there was a tendency for the rate of hydrolysis to increase, except for the anomalous behavior of 4, which was consistent with its relative rate of hydrolysis in aqueous solutions (1). In addition, the kinetics of hydrolysis of 1–5 and p-nitrophenyl phosphate (p-NPP) were studied in the presence of isolated alkaline phosphatases from a variety of sources. The initial rate of production of 17α- and 17β-testosterone from their respective phosphate esters (5 and 3), in the presence of human placental alkaline phosphatase, revealed that 3 was hydrolyzed 5.3-fold more rapidly than 5. This difference in reactivity might have been the result of differences in the stereochemical and/or steric nature of the two isomers. For p-NPP, 1, 2, and 4, the k cat and k cat / K m values determined in the presence of the various alkaline phosphatases showed little variation, whereas for 3, the catalytic constants, k cat and k cat / K m, were found to be dramatically less than those found for p-NPP, 1, 2, and 4. This suggested that the reaction steps, involving the noncovalent binding of the phosphomonoester to the enzyme and/or the nucleophilic displacement of the leaving alcohol of the phosphomonoester by the reactive amino acid residue of the enzyme, might have been less favorable in the case of 3, where the carbon atom of the ester linkage was secondary and was associated with a rigid ring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. S. Kearney and V. J. Stella. The anomalous hydrolytic behavior of 1-phenylvinyl phosphate. Pharm. Res. (in press).

  2. J. C. Melby and M. St. Cyr. Comparative studies on absorption and metabolic disposal of water-soluble corticosteroid esters. Metabolism 10:75–82 (1961).

    Google Scholar 

  3. L. E. Hare, K. C. Yeh, C. A. Ditzler, F. G. McMahon, and D. E. Duggan. Bioavailability of dexamethasone II. Dexamethasone phosphate. Clin. Pharmacol. Ther. 18:330–337 (1975).

    Google Scholar 

  4. S. Miyabo, T. Nakamura, S. Kuwazima, and S. Kishida. A comparison of the bioavailability of dexamethasone phosphate and sulfate in man. Eur. J. Clin. Pharmacol. 20:277–282 (1981).

    Google Scholar 

  5. P. Rohdewald, H. Mollmann, J. Barth, J. Rehder, and H. Derendorf. Pharmacokinetics of dexamethasone and its phosphate ester. Biopharm. Drug. Dis. 8:205–212 (1987).

    Google Scholar 

  6. P. O. Gunnarsson, S. B. Andersson, S. A. Johansson, T. Nilsson, and G. Plym-Forshell. Pharmacokinetics of estramustine phosphate. Eur. J. Clin. Pharmacol. 26:113–119 (1984).

    Google Scholar 

  7. H. Mollmann, P. Rohdewald, J. Barth, C. Mollmann, M. Verho, and H. Derendorf. Comparative pharmacokinetics of methylprednisolone phosphate and hemisuccinate in high doses. Pharm. Res. 5:509–513 (1988).

    Google Scholar 

  8. H. Mollmann, P. Rohdewald, J. Barth, M. Verho, and H. Derendorf. Pharmacokinetics and dose linearity testing of methylprednisolone phosphate. Biopharm. Drug. Disp. 10:453–464 (1989).

    Google Scholar 

  9. R. M. DeHaan, C. M. Metzler, D. Schellenberg, and W. D. Vandenbosch. Pharmacokinetic studies of clindamycin phosphate. J. Clin. Pharmacol. 13:190–209 (1973).

    Google Scholar 

  10. K. I. Plaisance, G. L. Drusano, A. Forrest, R. J. Townsend, and H. C. Standiford. Pharmacokinetic evaluation of two dosage regimens of clindamycin phosphate. Antimicrob. Agents Chemother. 33:618–620 (1989).

    Google Scholar 

  11. G. A. LePage, S. R. Naik, S. B. Katakkar, and A. Khaliq. 9-β-D-Arabinofuranosyladenine-5′-phosphate metabolism and excretion in humans. Cancer Res. 35:3036–3040 (1975).

    Google Scholar 

  12. H. Mollmann, P. Rohdewald, E. W. Schmidt, V. Salomon, and H. Derendorf. Pharmacokinetics of triamcinolone acetonide and its phosphate ester. Eur. J. Clin. Pharmacol. 29:85–89 (1985).

    Google Scholar 

  13. B. A. Boucher, A. M. Bombassaro, S. N. Rasmussen, C. B. Watridge, R. Achari, and P. Turlapaty. Phenytoin prodrug 3-phosphoryloxymethyl phenytoin (ACC-9653): Pharmacokinetics in patients following intravenous and intramuscular administration. J. Pharm. Sci. 78:929–932 (1989).

    Google Scholar 

  14. N. Gerber, D. C. Mays, K. H. Donn, A. Laddu, R. M. Guthrie, P. Turlapaty, C. Y. Quon, and W. K. Rivenburg. Safety, tolerance and pharmacokinetics of intravenous doses of the phosphate ester of 3-hydroxymethyl-5,5-diphenylhydantoin: A new prodrug of phenytoin. J. Clin. Pharmacol. 28:1023–1032 (1988).

    Google Scholar 

  15. S. A. Varia, S. Schuller, K. B. Sloan, and V. J. Stella. Phenytoin prodrugs III. Water-soluble prodrugs for oral and/or parenteral use. J. Pharm. Sci. 73:1068–1073 (1984).

    Google Scholar 

  16. O. A. Bessey, O. H. Lowry, and M. J. Brock. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164:321–329 (1946).

    Google Scholar 

  17. M. Martland, F. S. Hansman, and R. Robison. The phosphoricesterase of blood. Biochem. J. 18:1152–1160 (1924).

    Google Scholar 

  18. M. A. M. Abul-Fadl and E. J. King. Properties of the acid phosphatases of erythrocytes and of human prostate gland. Biochem. J. 45:51–60 (1949).

    Google Scholar 

  19. D. A. Hopkinson, N. Spencer, and H. Harris. Red cell acid phosphatase varients: A new human polymorphism. Nature 199:969–971 (1963).

    Google Scholar 

  20. P. Haspra, A. Sutter, and J. Wirz. Acidity of acetophenone enol in aqueous solution. Angew. Chem. Int. Ed. Engl. 18:617–619 (1979).

    Google Scholar 

  21. V. V. Egorova, A. V. Zakharychev, and S. N. Ananchenko. Structure and reactivity of steroids VI. Long range effects in a series of Δl,3,5(10)-estratriene compounds. Tetrahedron 29:301–307 (1973).

    Google Scholar 

  22. S. A. Varia, S. Schuller, and V. J. Stella. Phenytoin prodrugs IV: Hydrolysis of various 3-(hydroxymethyl)phenytoin esters. J. Pharm. Sci. 73:1074–1080 (1984).

    Google Scholar 

  23. J. March. Advanced Organic Chemistry, 3rd ed., Wiley, New York, 1985, p. 221.

    Google Scholar 

  24. R. Sokal and F. J. Rohlf. Biometry, 2nd ed., W. H. Freeman, New York, 1981, pp. 499–506.

    Google Scholar 

  25. K. H. Byington. Dopamine 3 or 4 phosphate: Pharmacologic properties. Fed. Proc. 45:581 (1986).

    Google Scholar 

  26. K. H. Byington. Pharmacologic properties of catecholamine phosphate esters. Fed. Proc. 46:699 (1987).

    Google Scholar 

  27. N. Frank, E. Frei, and M. Wiessler. Metabolism of N-nitrosohydroxyethyl-alkylamine phosphate esters in the rat. Toxicology 57:59–67 (1989).

    Google Scholar 

  28. V. E. Bamann and P. Schwarze. Die stereochemische spezifitat der “alkalischen” phosphatase bei der spaltung phosphoman-delsaure. Ein beitrag zum mechanisms des optischen auswahlens von enzymen. Hoppe-Seyler Z. Physiol. Chem. 349:192–196 (1968).

    Google Scholar 

  29. H. Lineweaver and D. Burk. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658–666 (1934).

    Google Scholar 

  30. T. W. Reid and I. B. Wilson. In P. D. Boyer (ed.), The Enzymes, Vol. 4, 3rd ed., 1971, p. 373.

  31. J. M. Sowadski, M. D. Handschumacher, H. M. Krishina Murty, B. A. Foster, and H. W. Wyckoff. Refined structure of alkaline phosphatase from Escherichia coli at 2.8A resolution. J. Mol. Biol. 186:417–433 (1985).

    Google Scholar 

  32. A. Williams and R. A. Naylor. Evidence for SN2(P) mechanism in the phosphorylation of alkaline phosphate by substrates. J. Chem. Soc. B 1973–1979 (1971).

  33. A. J. Kirby and A. G. Varvoglis. The reactivity of phosphate esters. Monoester hydrolysis. J. Am. Chem. Soc. 89:415–423 (1967).

    Google Scholar 

  34. A. D. Hall and A. Williams. Leaving group dependence in the phosphorylation of Escherichia coli alkaline phosphatase by mono-phosphate esters. Biochemistry 25:4784–4790 (1986).

    Google Scholar 

  35. S. J. Benkovic and K. J. Schray. Metal ion catalysis of phosphoryl transfer from phosphoenolpyruvate. Biochemistry 7:4097–4102 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearney, A.S., Stella, V.J. The in Vitro Enzymic Labilities of Chemically Distinct Phosphomonoester Prodrugs. Pharm Res 9, 497–503 (1992). https://doi.org/10.1023/A:1015840329786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015840329786

Navigation