Skip to main content
Log in

Absorptive-Mediated Endocytosis of an Adrenocorticotropic Hormone (ACTH) Analogue, Ebiratide, into the Blood–Brain Barrier: Studies with Monolayers of Primary Cultured Bovine Brain Capillary Endothelial Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The internalization of a neuromodulatory adrenocorticotropic hormone (ACTH) analogue, [125I]ebiratide (H-Met(O2)-Glu[125I]His-Phe-D-Lys-Phe-NH(CH2)8NH2), was examined in cultured mono-layers of bovine brain capillary endothelial cells (BCEC). HPLC analysis of the incubation solution showed that [125I]ebiratide was not metabolized during the incubation with BCEC. The acid-resistant binding of [125I]ebiratide to BCEC increased with time for 120 min and showed a significant dependence on temperature and medium osmolarity. Pretreatment of BCEC with dansylcadaverine or phenylarsine oxide, endocytosis inhibitors, and 2,4-dinitrophenol, a metabolic inhibitor, decreased significantly the acid-resistant binding of [125I]ebiratide. The acid-resistant binding of [125I]ebiratide was saturable in the presence of unlabeled ebiratide (100 nM–1 mM). The maximal internalization capacity (B max) at 30 min was 7.96 ± 3.27 µmol/mg of protein with a half-saturation constant (K d) of 15.9 ± 6.4 µM. The acid-resistant binding was inhibited by basic peptides such as poly-L-lysine, protamine, histone, and ACTH but was not inhibited by poly-L-glutamic acid, insulin, or transferrin. These results confirmed that ebiratide is transported through the blood-brain barrier via an absorptive-mediated endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. Terasaki, K. Hirai, H. Sato, Y. S. Kang, and A. Tsuji. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078, into the blood-brain barrier. J. Pharmacol. Exp. Ther. 251:351–357 (1989).

    Google Scholar 

  2. T. Terasaki, Y. Deguchi, H. Sato, K. Hirai, and A. Tsuji. In vivo transport of a dynorphin-like analgesic peptide, E-2078, through the blood-brain barrier: An application of brain microdialysis. Pharm. Res. 8:815–820 (1991).

    Google Scholar 

  3. F. J. Hock, H. J. Gerhards, G. Wiemer, P. Usinger, and R. Geiger. Learning and memory processes of an ACTH4-9 analog (ebiratide; Hoe 427) in mice and rats. Peptides 9:575–581 (1988).

    Google Scholar 

  4. T. Matsumoto, K. Oshima, A. Miyamoto, M. Sakurai, M. Gotoh, and S. Hayashi. Trophic action of α-melanocyte stimulating hormone (α-MSH) and Hoe 427, an adrenocorticotropic hormone (ACTH) analogue, on cultured septal neurons from rat embryos. Neurochem. Res. 14:778 (1989) (abstract).

    Google Scholar 

  5. G. Wiemer, H. J. Gerhards, F. J. Hock, P. Usinger, W. von Rechenberg, and R. Geiger. Neurochemical effects of the synthetic ACTH4-9-analog Hoe 427 (ebiratide) in rat brain. Peptides 9:1081–1087 (1988).

    Google Scholar 

  6. T. Shimura, S. Tabata, T. Ohnishi, T. Terasaki, and A. Tsuji. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier. J. Pharmacol. Exp. Ther. 258:459–465 (1991).

    Google Scholar 

  7. A. K. Kumagai, J. B. Eisenberg, and W. M. Pardridge. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. J. Biol. Chem. 262:15214–15219 (1987).

    Google Scholar 

  8. D. Triguero, J. B. Buciak, J. Yang, and W. M. Pardridge. Blood-brain barrier transport of cationized immunoglobulin G: Enhanced delivery compared to native protein. Proc. Natl. Acad. Sci. USA 86:4761–4765 (1989).

    Google Scholar 

  9. W. M. Pardridge, D. Triguero, and J. Buciak. Transport of histone through the blood-brain barrier. J. Pharmacol. Exp. Ther. 251:821–826 (1989).

    Google Scholar 

  10. T. Shimura, S. Tabata, and S. Hayashi. Brain transfer of a new neuromodulating ACTH analog, ebiratide, in rats. Peptides 2:509–512 (1991).

    Google Scholar 

  11. T. Terasaki, S. Takakuwa, S. Moritani, and A. Tsuji. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells. J. Pharmacol. Exp. Ther. 258:932–937 (1991).

    Google Scholar 

  12. J. B. M. M. van Bree, K. L. Audus, and R. T. Borchardt. Carrier-mediated transport of bacrofen across monolayers of bovine brain endothelial cells in primary culture. Pharm. Res. 5:369–371 (1988).

    Google Scholar 

  13. K. L. Audus and R. T. Borchardt. Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 47:484–488 (1986).

    Google Scholar 

  14. C. Estrada, J. Bready, J. Berliner, and P. A. Cancilla. Choline uptake by cerebral capillary endothelial cells in culture. J. Neurochem. 54:1467–1473 (1990).

    Google Scholar 

  15. B. Draznin, C. C. Solomons, D. R. Toothaker, and K. E. Sussman. Energy-dependent steps in insulin-hepatocyte interaction. Endocrinology 108:8–17 (1981).

    Google Scholar 

  16. B. L. Clarke and P. H. Weigel. Recycling of the asialoglyco-protein receptor in isolated rat hepatocytes: ATP depletion blocks receptor recycling but not a single round of endocytosis. J. Biol. Chem. 260:128–133 (1985).

    Google Scholar 

  17. R. Persson, E. Ahlstrom, and E. Fries. Differential arrest of secretory protein transport in cultured rat hepatocytes by azide treatment. J. Cell Biol. 107:2503–2510 (1988).

    Google Scholar 

  18. W. M. Hunter and F. C. Greenwood. Preparation of iodine-131 labeled human growth hormone of high specific activity. Nature 194:495–496 (1962).

    Google Scholar 

  19. K. L. Audus and R. T. Borchardt. Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm. Res. 3:81–87 (1986).

    Google Scholar 

  20. S. Meresse, M. P. Dehouck, P. Delorme, M. Bensaid, J. P. Tauber, C. Delbart, J. C. Fruchart, and R. Cecchelli. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J. Neurochem. 53:1363–1371 (1989).

    Google Scholar 

  21. C. C. W. Hughes and P. L. Lantos. Uptake of leucine and alanine by cultured cerebral capillary endothelial cells. Brain Res. 480:126–132 (1989).

    Google Scholar 

  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol Chem. 193:265–275 (1951).

    Google Scholar 

  23. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4:879–885 (1981).

    Google Scholar 

  24. H. T. Haigler, F. R. Maxfield, M. C. Willingham, and I. Pastan. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J. Biol. Chem. 255:1239–1241 (1980).

    Google Scholar 

  25. V. P. Knutson, G. V. Ronnett, and M. D. Lane. Rapid, reversible internalization of cell surface insulin receptors. J. Biol. Chem. 258:12139–12142 (1983).

    Google Scholar 

  26. H. S. Wiley and D. D. Cunningham. The endocytosis rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J. Biol. Chem. 257:4222–4229 (1982).

    Google Scholar 

  27. K. R. Smith, A. Kato, and R. T. Borchardt. Characterization of specific receptors for atrial natriuretic factor on cultured bovine brain capillary endothelial cells. Biochem. Biophys. Res. Commun. 157:308–314 (1988).

    Google Scholar 

  28. H. J. L. Frank and W. M. Pardridge. A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes 30:757–761 (1981).

    Google Scholar 

  29. W. M. Pardridge, J. Eisenberg, and J. Yang. Human blood-brain barrier transferrin receptor. Metabolism 36:892–895 (1987).

    Google Scholar 

  30. T. Mitsuma, Y. Hirooka, T. Maeda, S. Tabata, and S. Hayashi. Radioimmunoassay of an analogue of adrenocorticotropic hormone, H-Met(O2)-Glu-His-Phe-D-Lys-Phe-NH(CH2)8-NH2 (ebiratide). J. Xenobiot. Metab. Dispos. 5:323–330 (1990).

    Google Scholar 

  31. A. W. Vorbrodt, A. S. Lossinsky, D. H. Dobrogowska, and H. M. Wisniewski. Distribution of anionic sites and glycoconjugates on the endothelial surfaces of the developing blood-brain barrier. Dev. Brain Res. 29:69–79 (1986).

    Google Scholar 

  32. J. Leonis and C. H. Li. Corticotropins (ACTH). XII. Acid-base equilibria of α-corticotropin and bovine corticotropin. J. Am. Chem. Soc. 81:415–419 (1959).

    Google Scholar 

  33. W. A. Banks, A. J. Kastin, and C. M. Barrera. Delivering peptides to the central nervous system. Dilemmas and strategies. Pharm. Res. 8:1345–1350 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasaki, T., Takakuwa, S., Saheki, A. et al. Absorptive-Mediated Endocytosis of an Adrenocorticotropic Hormone (ACTH) Analogue, Ebiratide, into the Blood–Brain Barrier: Studies with Monolayers of Primary Cultured Bovine Brain Capillary Endothelial Cells. Pharm Res 9, 529–534 (1992). https://doi.org/10.1023/A:1015848531603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015848531603

Navigation