Skip to main content
Log in

Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Human colon adenocarcinoma (Caco-2) cells, when grown on semipermeable filters, spontaneously differentiate in culture to form confluent monolayers which both structurally and functionally resemble the small intestinal epithelium. Because of this property they show promise as a simple, in vitro model for the study of drug absorption and metabolism during absorption in the intestinal mucosa. In the present study, the transport of several model solutes across Caco-2 cell monolayers grown in the Transwell diffusion cell system was examined. Maximum transport rates were found for the actively transported substance glucose and the lipophilic solutes testosterone and salicylic acid. Slower rates were observed for urea, hippurate, and salicylate anions and were correlated with the apparent partition coefficient of the solute. These results are similar to what is found with the same compounds in other, in vivo absorption model systems. It is concluded that the Caco-2 cell system may give useful predictions concerning the oral absorption potential of new drug substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. I. Osiecka, P. A. Porter, R. T. Borchardt, J. A. Fix, and C. R. Gardner. Pharm. Res. 2:284–292 (1985).

    Google Scholar 

  2. W. H. Barr and S. Riegelman. J. Pharm. Sci. 59:154–163 (1970).

    Google Scholar 

  3. F. Raul, M. Kedinger, P. Simon, J. Grenier, and K. Haffen. Biol. Cell 3:163–168 (1978).

    Google Scholar 

  4. A. Quaroni, J. Wands, R. L. Trelstad, and K. J. Isselbacher. J. Cell Biol. 80:248–265 (1979).

    Google Scholar 

  5. M. Pinto, S. Ronine-Leon, M. D. Appay, M. Kidinger, N. Triadov, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Hoffen, J. Fogh, and A. Zwiebaum. Biol. Cell 47:323–330 (1983).

    Google Scholar 

  6. M. Pinto, M. D. Appay, and P. Simon-Assmann. Biol. Cell 44:193–196 (1982).

    Google Scholar 

  7. A. Zweibaum, N. Triadov, M. Kedinger, C. Augeron, S. Robine-Leon, M. Pinto, M. Rousset, and K. Haffen. Int. J. Cancer 32:407–412 (1983).

    Google Scholar 

  8. A. Zweibaum, H. P. Hauri, E. Sterchi, I. Chantret, K. Haffen, J. Bamat, and B. Sordat. Int. J. Cancer 34:591–598 (1984).

    Google Scholar 

  9. H. P. Hauri, E. E. Sterchi, D. Bienz, J. A. M. Fransen, and A. Marker. J. Cell Biol. 101:838–851 (1985).

    Google Scholar 

  10. E. Grasset, J. Bernareu, and M. Pinto. Am. J. Physiol. 248:C410–C418 (1985).

    Google Scholar 

  11. I. Mohrmann, M. Mohrmann, J. Biber, and H. Muren. Am. J. Physiol. 250:G323–G330 (1986).

    Google Scholar 

  12. M. Rousset. Biochemie 60:1035–1040 (1986).

    Google Scholar 

  13. A. Quaroni. J. Natl. Cancer Inst. 76:571–585 (1986).

    Google Scholar 

  14. A. Quaroni, M. M. Weiser, S. Lee, and D. Amodeo. J. Natl. Cancer Inst. 77:405–415 (1986).

    Google Scholar 

  15. P. Bissonnette, A. Blais, and A. Berteloot. Fed. Proc. 46:A5579 (1987).

    Google Scholar 

  16. A. Blais, P. Bissonnette, and A. Berteloot. Gastroenterology 92:1319 (1987).

    Google Scholar 

  17. L. Bergin and A. H. Dantzig. FASEB J. 2:A2646 (1988).

    Google Scholar 

  18. A. H. Dantzig and L. Bergin. FASEB J. 2:A6933 (1988).

    Google Scholar 

  19. C. J. Dix, H. Y. Obray, and G. Wilson. Biochem. Soc. Trans. 15:439–440 (1987).

    Google Scholar 

  20. R. Muthiah and B. Seetharam. J. Cell Biol. 105:235A (1987).

    Google Scholar 

  21. R. L. Ehrmann and G. O. Gey. J. Natl. Cancer Inst. 16:1375–1378 (1956).

    Google Scholar 

  22. E. S. Reynolds. J. Cell Biol. 71:208–212 (1963).

    Google Scholar 

  23. J. M. Robinson and M. J. Karnovsky. J. Histochem. Cytochem. 31:1197–1208 (1983).

    Google Scholar 

  24. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  25. A. H. Dantzig and L. Bergin. Biochem. Biophys. Res. Commun. 155:1082–1087 (1988).

    Google Scholar 

  26. S. M. Albelda, P. M. Sampson, F. R. Haselton, J. M. McNiff, S. N. Mueller, S. K. Williams, A. P. Fishman, and E. M. Levine. J. Appl. Physiol. 64:308–322 (1988).

    Google Scholar 

  27. M. Rousset, G. Chevalier, J. P. Rousset, E. Dessaulx, and A. Zweibaum. Cancer Res. 39:531–534 (1979).

    Google Scholar 

  28. N. F. H. Ho, J. Y. Park, P. F. Ni, and W. I. Higuchi. In W. Crouthamel and A. C. Sugars (eds.), Animal Models for Oral Drug Delivery in Man, Am. Pharm. Assoc., Washington, DC, 1983, pp. 27–106.

    Google Scholar 

  29. N. F. H. Ho, J. Y. Park, W. Morozowich, and W. I. Higuchi. In E. R. Roche (ed.), Design of Biopharmaceutical Properties Through Prodrugs and Analogs, Am. Pharm. Assoc., Washington, DC, 1977, pp. 136–227.

    Google Scholar 

  30. R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and P. S. Burton (submitted for publication).

  31. A. Blais, P. Bissonnette, and A. Berteloot. J. Membrane Biol. 99:113–125 (1987).

    Google Scholar 

  32. H. Westergaard and J. M. Dietschy. J. Clin. Invest. 54:718–732 (1974).

    Google Scholar 

  33. F. A. Wilson and J. M. Dietschy. Biochim. Biophys. Acta 363:112–126 (1974).

    Google Scholar 

  34. K. W. Smithson, D. B. Millar, L. R. Jacobs, and G. M. Gray. Science 241:1241–1244 (1981).

    Google Scholar 

  35. C. H. Von Bonsdorf, S. D. Fuller, and K. Simons. EMBO J. 4:2781–2792 (1985).

    Google Scholar 

  36. N. F. H. Ho, J. S. Day, C. L. Barsuhn, P. S. Burton, and T. J. Raub. J. Control. Release 11:3–24 (1990).

    Google Scholar 

  37. K. E. Knuth, W. Morozowich, and N. F. H. Ho. Pharm. Res. 3:475 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgers, A.R., Conradi, R.A. & Burton, P.S. Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa. Pharm Res 7, 902–910 (1990). https://doi.org/10.1023/A:1015937605100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015937605100

Navigation