Skip to main content
Log in

Evidence for Intestinal Secretion as an Additional Clearance Pathway of Talinolol Enantiomers: Concentration- and Dose-dependent Absorption in Vitro and in Vivo

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate carrier-mediated intestinal secretion of talinolol enantiomers in vivo and in vitro.

Methods. In clinical studies with i.v. and p.o. dosage of rac-talinolol (30 mg and 100 mg, resp.) performed in a small number of cholecystectomized patients total and partial clearances were determined on the basis of plasma, bile and urine concentrations. The dose-dependence of AUC was investigated in 12 healthy volunteers (25, 50, 100, and 400 mg rac-talinolol as single p.o. doses). Concentration-dependence of the permeability across Caco-2 cell monolayers included concentrations from 0.1 to 2.0 mM, inhibition by verapamil was tested at 0.5 mM.

Results. The total clearance as well as the apparent oral clearance (CL/F) were slightly higher for S-(–)-than for R-(+)-talinolol. Calculation of the partial clearances showed that also the residual clearance was higher for the S- than for the R-enantiomer. In the healthy volunteers, CL/F increased with increasing doses, while the S/R ratio decreased approaching unity for the highest dose. Also the results from Caco-2 cell permeation studies yielded a clear concentration-dependence with decreasing stereoselectivity for the higher concentration range. Permeability of both enantiomers was considerably higher for b→a than a→b transport, however, this difference disappeared when verapamil was added.

Conclusions. Although not very expressed, the detected stereoselectivities indicate a preferential absorption of R-(+)-talinolol in a lower concentration and dose range, which is most probably due to a moderate stereoselectivity at the carrier system involved in intestinal secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Oberle R. L., Amidon G. L. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J. Pharmacokin. Biopharm. 15:529–544 (1987).

    Google Scholar 

  2. Langguth P., Lee K. M., Spahn-Langguth H., Amidon G. L. Variable gastric emptying and discontinuities in drug absorption profiles: Dependence of rates and extent of cimetidine absorption on motility phase and pH. Biopharm. Drug Dispos. 15:719–746 (1994).

    Google Scholar 

  3. Lipka E., Lee I-D., Langguth P., Spahn-Langguth H., Mutschler E., Amidon G. L. Celiprolol double peak occurrence and gastric motility: nonlinear mixed effects modeling of bioavailability data obtained in dogs. J. Pharmacokin. Biopharm. submitted.

  4. Spahn-Langguth H., Langguth P., Brockmeier D. The Pharmacokinetics of piretanide in humans: An update. In: Johnson S., Johnson F. N. (eds.) The Diuretic Agents 2: Piretanide. Marius Press, Carnforth, UK, 1993 pp. 11–29.

    Google Scholar 

  5. Lennernäs H., Regardh C. G. Evidence for an interaction between the beta-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and doublepeaks in the plasma concentration-time profile. Pharm. Res. 10:879–883 (1993).

    Google Scholar 

  6. Langguth P., Khan P. J., Garrett E. R. Pharmacokinetics of morphine and its surrogates XI: Effect of simultaneously administered naltrexone and morphine on the pharmacokinetics and pharmacodynamics of each in the dog. Biopharm. Drug Dispos. 11:419–444 (1990).

    Google Scholar 

  7. Lennernäs H., Regardh C. G. Regional gastrointestinal absorption of the beta-blocker pafenolol in the rat and intestinal transit rate determined by movement of 14C-polyethylene glycol (PEG) 4000. Pharm. Res. 10:130–135 (1993).

    Google Scholar 

  8. Bartsch R., Femmer K., Heer S., Ploen U., Poppe H. Zur Pharmakologie der optisch aktiven Isomeren von Talinolol (Cordanum). Dt. Gesundh.-Wesen; 34:1041–1046 (1979).

    Google Scholar 

  9. Wetterich U., Spahn-Langguth H., Terhaag B., Mutschler E. Bioanalytical method for talinolol enantiomers employing a chiral polyacrylamide stationary phase. Chirality submitted (1996).

  10. Lennernäs H., Renberg L., Hoffmann K. J., Regardh C. G. Presystemic elimination of the beta-blocker pafenolol in the rat after oral and intraperitoneal administration and identification of a main metabolite in both rats and humans. Drug Metab. Dispos. 21:435–440 (1993).

    Google Scholar 

  11. Yamaguchi T., Ikeda C., Sekine Y. Intestinal absorption of a betaadrenergic blocking agent nadolol. I. Comparison of absorption behaviour of nadolol with those of other β-blocking agents in rats. Chem. Pharm. Bull. 34:3362–3369 (1986).

    Google Scholar 

  12. Yamaguchi T., Ikeda C., Sekine Y. Intestinal absorption of the beta-adrenergic blocking agent nadolol. II. Mechanism of the inhibitory effect on the intestinal absorption of nadolol by sodium cholate in rats. Chem. Pharm. Bull 34:3836–3843 (1986).

    Google Scholar 

  13. Lennernäs H., Regardh C. G. Dose-dependent intestinal absorption and significant intestinal excretion (exsorption) of the betablocker pafenolol in the rat. Pharm. Res. 10:727–731 (1993).

    Google Scholar 

  14. Kuo S. M., Whitby B. R., Artursson P., Ziemniak J. A. The contribution of intestinal secretion to the dose-dependent absorption of celiprolol. Pharm. Res. 11:648–653 (1994).

    Google Scholar 

  15. Karlsson J., Kuo S. M., Ziemniak J., Artursson P. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol. 110:1009–1016 (1993).

    Google Scholar 

  16. Turnheim K., Lauterbach F. Interaction between intestinal absorption and secretion of monoquaternary ammonium compounds in guinea pigs—a concept for the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther. 212:418–424 (1980).

    Google Scholar 

  17. Reymond J. P., Steimer J. L., Niederberger W. On the dose dependency of Cyclosporin A absorption and disposition in healthy volunteers. J. Pharmacokin. Biopharm. 16:331–335 (1988).

    Google Scholar 

  18. Arimori K., Nakano M. Dose-dependency in the exsorption of theophylline and the intestinal dialysis of theophylline by oral activated charcoal in rats. J. Pharm. Pharmacol. 40:101–105 (1988).

    Google Scholar 

  19. Kolars J. C., Schmiedlin-Ren P., Dobbins W. O., Schuetz J., Wrighton S. A., Watkins P. B. Heterogeneity of Cytochrome P450IIIA expression in rat gut epithelia. Gastroenterol. 102:1186–1198 (1992).

    Google Scholar 

  20. Augustijns P. F., Bradshaw T. P., Gan L.-S. L., Hendren R. W., Thakker D. R. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun. 197:360–365 (1993).

    Google Scholar 

  21. Hunter J., Jepson M. A., Tsuruos T., Simmons N. L., Hirst B. H. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J. Biol. Chem. 268:14991–14997 (1993).

    Google Scholar 

  22. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annual Reviews 58:137–171 (1989).

    Google Scholar 

  23. Thiebault F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 1987;84:7735–7738.

    CAS  PubMed  Google Scholar 

  24. Artursson P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  25. Hunter J., Hirst B. H., Simmons N. L. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743–749 (1993).

    Google Scholar 

  26. Heinzel G., Woloszcak R., Thomann P. TOPFIT, Version 2.0, Gustav Fischer Verlag, Stuttgart (1993).

    Google Scholar 

  27. Oertel R. Analytik der Metabolite des Beta-Rezeptorenblockers Talinolol beim Menschen, Dissertation Universität Dresden (1994).

  28. Terhaag B., Gramatte T., Richter K., Voss J., Feller K. The biliary elimination of the selective beta-receptor blocking drug talinolol in man. Int. J. Clin. Pharmacol. Ther. Toxicol. 27:170–172 (1989).

    Google Scholar 

  29. Raderer M., Scheithauer W. Clinical trials of agents that reverse multidrug resistance. Cancer 72:3553–3563 (1993).

    CAS  PubMed  Google Scholar 

  30. Thews G., Mutschler E., Vaupel P., Anatomie, Physiologie, Pathophysiologie des Menschen. Wiss. Verlagsges., Stuttgart (1989).

    Google Scholar 

  31. Sachs L., Angewandte Statistik, Springer-Verlag, Berlin (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetterich, U., Spahn-Langguth, H., Mutschler, E. et al. Evidence for Intestinal Secretion as an Additional Clearance Pathway of Talinolol Enantiomers: Concentration- and Dose-dependent Absorption in Vitro and in Vivo. Pharm Res 13, 514–522 (1996). https://doi.org/10.1023/A:1016029601311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016029601311

Navigation