Skip to main content
Log in

Evaluation of the Uptake of Pravastatin by Perfused Rat Liver and Primary Cultured Rat Hepatocytes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We have already demonstrated that the HMG-CoA reductase inhibitor, pravastatin is actively taken up by isolated rat hepatocytes via a multispecific anion transporter (Yamazaki et al., Am. J. Physiol. 264, G36-44, (1993)). We further attempted the quantitative evaluation of this uptake in different experimental systems.

Methods. We have quantified the initial uptake of pravastatin by both primary cultured hepatocytes and by isolated perfused rat liver using the multiple indicator dilution (MID) method.

Results. The permeability surface area product for the influx (PSinf) of pravastatin evaluated in MID study was comparable with those reported previously in isolated rat hepatocytes and in vivo. Furthermore, the highly concentrative uptake (influx clearance >> efflux clearance) of pravastatin was confirmed by kinetic analysis of the dilution curves obtained in the MID study. On the other hand, the uptake by primary cultured cells was significantly lower than that by isolated cells, and the ability of hepatocytes to take up pravastatin showed a decrease with time in culture (0-96 hr). The Vmax for uptake diminished with increasing time in culture, while no significant change was observed in both Km and nonspecific diffusion clearance.

Conclusions. The MID method in isolated perfused liver which maintains the spatial and anatomical architecture can be used to quantitatively evaluate the initial uptake of pravastatin. Furthermore, the ability of hepatocytes to take up pravastatin is diminished in culture with time and this is caused by a decrease in Vmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Yamazaki, H. Suzuki, M. Hanano, T. Tokui, T. Komai, and Y. Sugiyama. Na+-independent multispecific anion transporter mediates active transport of pravastatin into rat liver. Am. J. Physiol. 264: G36–44, (1993).

    Google Scholar 

  2. T. Komai, E. Sigehara, T. Tokui, T. Koga, M. Ishigami, C. Kuroiwa, and S. Horiuchi. Carrier-mediated uptake of pravastatin by rat hepatocytes in primary culture. Biochem. Pharmacol. 43: 667–670, (1990).

    Google Scholar 

  3. S. C. Tsao, Y. Sugiyama, Y. Sawada, S. Nagase, T. Iga, and M. Hanano. Effect of albumin on hepatic uptake of warfarin in normal and analbuminemic mutant rats: Analysis by multiple indicator dilution method. J. Pharmacokin. Biopharm. 14: 51–64, (1986).

    Google Scholar 

  4. S. Miyauchi, Y. Sugiyama, Y. Sawada, K. Morita, T. Iga, and M. Hanano. Kinetics of hepatic transport of 4-methylumbelliferone in rats: Analysis by multiple indicator dilution method. J. Pharmacokin. Biopharm. 15: 25–38, (1987).

    Google Scholar 

  5. H. Sato, Y. Sugiyama, Y. Sawada, T. Iga, T. Fuwa, and M. Hanano. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple indicator dilution method. Proc. Natl. Acad. Sci. USA 85: 8355–8359, (1988).

    Google Scholar 

  6. S. Miyauchi, Y. Sawada, T. Iga, M. Hanano, and Y. Sugiyama. Comparison of the hepatic uptake clearances of fifteen drugs with a wide range of membrane permeabilities in isolated rat hepatocytes and perfused rat livers. Pharm. Res. 10: 434–440, (1993).

    Google Scholar 

  7. C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling. Circ. Res. 27: 739–764, (1970).

    Google Scholar 

  8. T. Kakutani, K. Yamaoka, M. Hashida, and H. Sezaki. A new method for assessment of drug disposition in muscle: Application of statistical moment theory to local perfusion system. J. Pharmacokinet. Biopharm. 13: 609–631, (1985).

    Google Scholar 

  9. A. W. Wolkoff, C. A. Goresky, J. Sellin, Z. Gatmaitan, I. M. Arias. Role of ligandin in transfer of bilirubin from plasma into liver. Am. J. Physiol. 236: E638–648, (1979).

    Google Scholar 

  10. P. Moldeus, J. Hogberg, and S. Orrenius. Isolation and use of liver cells. Methods Enzymol. 52: 60–71, (1978).

    Google Scholar 

  11. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275, (1951).

    CAS  PubMed  Google Scholar 

  12. K. Yamaoka, T. Tanigawara, Y. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4: 879–885, (1981).

    Google Scholar 

  13. H. Nakamura, H. Sano, M. Yamazaki, and Y. Sugiyama. Carrier-mediated active transport of histamine H2 receptor antagonists, cimetidine and nizatidine, into isolated rat hepatocytes: Contribution of type I system. J. Pharmacol. Exp. Therap. 269: 1220–1227, (1994).

    Google Scholar 

  14. H. N. Christensen. Biological transport. W. A. Benjamin Inc, London, (1975), pp. 417–436.

    Google Scholar 

  15. D. S. Kelley, and V. R. Potter. Regulation of amino acid transport systems by amino acid depletion and supplementation in monolayer cultures of rat hepatocytes. J. Biol. Chem. 253: 9009–9017, (1978).

    Google Scholar 

  16. K. Winkler, S. Keiding, and N. Tygstrup. The liver. Quantitative aspects of structure and function. ed. by G. Paumgartner and R. Preisig. Gasel, Karger, (1973), pp. 144–155.

    Google Scholar 

  17. K. S. Pang, and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. J. Pharmacokinet. Biopharm. 5: 625–653, (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishigami, M., Tokui, T., Komai, T. et al. Evaluation of the Uptake of Pravastatin by Perfused Rat Liver and Primary Cultured Rat Hepatocytes. Pharm Res 12, 1741–1745 (1995). https://doi.org/10.1023/A:1016226024587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016226024587

Navigation