Skip to main content
Log in

Transcellular Transport of Benzole Acid Across Caco-2 Cells by a pH-Dependent and Carrier-Mediated Transport Mechanism

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The pH-dependent transcellular transport of [14 C]benzoic acid across a Caco-2 cell monolayer is shown to be mediated by a monocarboxylic acid-specific carrier-mediated transport system, localized on the apical membrane. Evidence for the carrier-mediated transport of benzoic acid includes (a) the significant temperature and concentration dependence, (b) the metabolic energy dependence, (c) the inhibition by unlabeled benzoic acid and other monocarboxylic acids, (d) countertransport effects on the uptake of [14C]benzoic acid, and (e) effects of a proteinase (papain) and amino acid-modifying reagents. Furthermore, since carbonylcyanide p-trifluoromethoxyphenylhydrazone and nigericin significantly inhibited the transport of [14C] benzoic acid, the direct driving force for benzoic acid transport is suggested to be the inwardly directed proton gradient. From these results, together with previous observations using intestinal brush border membrane vesicles, the pH dependence of the transcellular transport of certain organic weak acids across Caco-2 cells is considered to result mainly from a proton gradient-dependent, carrier-mediated transport mechanism, rather than passive diffusion according to the pH-partition theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. B. Brodie and C. A. M. Hogben. Some physico-chemical factors in drug action. J. Pharm. Pharmacol. 9:345–380 (1957).

    Google Scholar 

  2. H. M. Said, J. A. Blar, M. L. Lucas, and M. E. Hilburn. Intestinal surface and microclimate in vitro and in vivo in the rat. J. Lab. Clin. Med. 107:420–426 (1986).

    Google Scholar 

  3. H. Nogami and T. Matsuzawa. Studies on absorption and excretion of drugs. I. Kinetics of penetration of acidic drug, salicylic acid, through the intestinal barrier in vitro. Chem. Pharm. Bull. 9:532–540 (1961).

    Google Scholar 

  4. W. G. Crouthamel, G. H. Tan, L. W. Dittert, and J. T. Doluisio. Drug absorption. IV. Influence of pH on absorption kinetics of weakly acidic drugs. J. Pharm. Sci. 60:1160–1163 (1971).

    Google Scholar 

  5. N. F. H. Ho, W. I. Higuchi, and J. Turi. Theoretical model studies of drug absorption and transport in the GI tract III. J. Pharm. Sci. 61:192–197 (1972).

    Google Scholar 

  6. D. Winne. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta 298:27–31 (1973).

    Google Scholar 

  7. A. Tsuji, M. T. Simanjuntak, I. Tamai, and T. Terasaki. pH-dependent intestinal transport of monocarboxylic acids: Carrier-mediated and H+-cotransport mechanism versus pH-partition hypothesis. J. Pharm. Sci. 79:1123–1124 (1990).

    Google Scholar 

  8. M. T. Simanjuntak, I. Tamai, T. Terasaki, and A. Tsuji. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. J. Pharmacobio-Dyn. 13:301–309 (1990).

    Google Scholar 

  9. M. T. Simanjuntak, T. Terasaki, I. Tamai, and A. Tsuji. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles. J. Pharmacobio-Dyn. 14:501–508 (1991).

    Google Scholar 

  10. C. Tiruppathi, D. F. Balkovetz, V. Ganapathy, Y. Miyamoto, and F. H. Leibach. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Biochem. J. 256:219–223 (1988).

    Google Scholar 

  11. E. Titus and G. A. Ahearn. Short-chain fatty acid transport in the intestine of a herbivorous teleost. J. Exp. Biol. 135:77–94 (1988).

    Google Scholar 

  12. J. M. Harig, K. H. Soergel, J. A. Barry, and K. Ramaswamy. Transport of propionate by human ileal brush-border membrane vesicles. Am. J. Physiol. 260:G776–G782 (1991).

    Google Scholar 

  13. N. Mascolo, V. M. Rajendran, and H. J. Binder. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101:331–338 (1991).

    Google Scholar 

  14. I. J. Higalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  15. I. J. Hidalgo and R. T. Borchardt. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim. Biophys. Acta 1028:25–30 (1990).

    Google Scholar 

  16. E. J. Hughson and C. R. Hopkins. Endocytic pathways in polarized Caco-2 cells: Identification of an endosomal compartment accessible from both apical and basolateral surfaces. J. Cell Biol. 110:337–348 (1990).

    Google Scholar 

  17. E. K. Anderberg, C. Nystrom, and P. Artursson. Epithelial transport of drugs in cell culture. VII. Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 81:879–887 (1992).

    Google Scholar 

  18. J. Fogh, J. M. Fogh, and T. Orfeo. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59:221–226 (1977).

    Google Scholar 

  19. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    Google Scholar 

  20. M. L. Hogerle and D. Winne. Drug absorption by the rat jejunum perfused in situ: Dissociation from the pH-partition theory and role of microclimate-pH and unstirred layer. Naunyn-Schmiedeberg Arch. Pharmacol. 332:249–255 (1983).

    Google Scholar 

  21. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    Google Scholar 

  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  23. Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Identification of histidyl and thiol groups at the active site of rabbit renal dipeptide transporter. J. Biol. Chem. 261:16133–16140 (1986).

    Google Scholar 

  24. R. J. Turner and J. N. George. Evidence for two disulfide bonds important to the functioning of the renal outer cortical brush-border membrane D-glucose transporter. J. Biol. Chem. 258:3565–3570 (1983).

    Google Scholar 

  25. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4:879–885 (1981).

    Google Scholar 

  26. A. H. Dantzig and L. Bergin. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta 1027:211–217 (1990).

    Google Scholar 

  27. A. J. M. Watson, S. Levine, M. Donowitz, and M. H. Montrose. Kinetics and regulation of a polarized Na+-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am. J. Physiol. 261:G229–G238 (1991).

    Google Scholar 

  28. F. G. Grillo and P. S. Aronson. Inactivation of the renal microvillus membrane Na+-H+ exchanger by histidine-specific reagents. J. Biol. Chem. 261:1120–1125 (1986).

    Google Scholar 

  29. P. S. Aronson, M. A. Suhm, and J. Nee. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J. Biol. Chem. 258:6767–6771 (1983).

    Google Scholar 

  30. M. Kato, H. Maegawa, T. Okano, K. Inui, and R. Hori. Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: Role of histidine residues. J. Pharmacol. Exp. Ther. 251:745–749 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, A., Takanaga, H., Tamai, I. et al. Transcellular Transport of Benzole Acid Across Caco-2 Cells by a pH-Dependent and Carrier-Mediated Transport Mechanism. Pharm Res 11, 30–37 (1994). https://doi.org/10.1023/A:1018933324914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018933324914

Navigation