Skip to main content
Log in

Mechanism and Kinetics of Transcellular Transport of a New β-Lactam Antibiotic Loracarbef Across an Intestinal Epithelial Membrane Model System (Caco-2)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Various processes involved in the transcellular transport (TT) of loracarbef (LOR) were studied in the Caco-2 cell monolayer, a cell culture model of the small intestinal epithelium. The results provide support for presence of two AP to BL peptide TT pathways in the intestinal epithelial cell monolayer (Caco-2). The H+ gradient-dependent pathway (Km = 0.789 mM, and Jmax = 163 pmol/min per cm2) is relatively “high affinity” and “low capacity” compared to H+ gradient-independent pathway (Km = 8.28 mM, and Jmax = 316 pmol/min per cm2). In addition, TT of LOR in the presence of a H+ gradient was inhibited 77% to 88% (p < 0.05) by 10 mM of cephalexin, enalapril, Gly-Pro and Phe-Pro, while TT of LOR in the absence of a H+ gradient was only inhibited 42% to 48% (p < 0.05) by 10 mM of Gly-Pro and Phe-Pro. Since AP uptake is H+ gradient-dependent and saturable while the BL efflux is mostly nonsaturable and not driven by a H+ gradient, these two transmembrane transport processes must be different, which could be the result of two different peptide carriers. In vivo, these two transport processes must have worked in concert to produce transcellular flux of loracarbef. To explain the differences between kinetic characteristics of AP uptake and TT transport, a cellular pharmacokinetic (PK) model was developed and the results indicate that the PK model appropriately described the kinetics of LOR TT. The use of this PK model may provide an additional advantage to the use of the cell culture model because kinetic parameters at both sides of the intestinal epithelial membrane may be obtained using the same preparation. Taken together, the Caco-2 model system represents an excellent model system for the study of carrier-mediated processes involved in the TT of peptides and peptide-like drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. D. G. Cooper. The carbacephems: A new beta-lactam antibiotic class. Am. J. Med., 93(suppl 6A):2s–6s (1992).

    Google Scholar 

  2. K. A. Desante, and M. L. Zeckel. Pharmacokinetic Profile of Loracarbef. Am. J. Med., 93(suppl 6A):16s–19s (1992).

    Google Scholar 

  3. A. Tsuji, E. Nakashima, I. Kagami, and T. Yamana. Intestinal absorption mechanism of amphoteric β-lactam antibiotics I: Comparative absorption and evidence for saturable transport of amino-β-lactam antibiotics by in situ rat small intestine. J. Pharm. Sci., 70:768–771 (1981).

    Google Scholar 

  4. A. Tsuji, E. Nakashima, I. Kagami, and T. Yamana. Intestinal absorption mechanism of amphoretic β-lactam antibiotics II: Michaelis-Menten kinetics of cyclacillin absorption and its pharmacokinetic analysis in rats. J. Pharm. Sci., 70:772–777 (1981).

    Google Scholar 

  5. A. Tsuji, T. Terasaki, I. Tamai, and H. Hirooka. H+-Gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. J. Pharmacol. Expt. Ther., 241:594–601 (1987).

    Google Scholar 

  6. K. Inui, T. Okano, H. Maegawa, M. Kato, M. Takano, and R. Hori. H+-Coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J. Pharmacol. Expt. Ther. 246:235–241 (1988).

    Google Scholar 

  7. P. J. Sinko and G. L. Amidon. Characterization of the oral absorption of β-lactam antibiotics. I. Cephalosporins: Determination of intrinsic membrane absorption parameters in the rat intestine in situ. Pharm. Res., 5:651–654 (1988).

    Google Scholar 

  8. K. Iseki, M. Sugawara, H. Saitoh, K. Miyazaki, and T. Arita. Comparison of transport characteristics of amino β-lactam antibiotics and dipeptide across rat intestinal brush-border membrane. J. Pharm. Pharmacol., 41:628–632 (1989).

    Google Scholar 

  9. A. H. Dantzig, D. C. Duckworth, and L. B. Tabas. Transport mechanism responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim. Biophys. Acta, 1191, 7–13, 1994.

    Google Scholar 

  10. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  11. D. T. Thwaites, C. D. A. Brown, B. H. Hirst, and N. L. Simmons. H+-Coupled dipeptide (glycylarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Biochim. Biophys. Acta. 1151:237–245 (1993).

    Google Scholar 

  12. H. Saito and K. I. Inui. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am. J. Physiol. 265:G289–G294 (1993).

    Google Scholar 

  13. K. Inui, M. Yamamoto, and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: Specific transport systems in apical and basolateral membranes. J. Pharmacol. Expt. Ther. 261:195–201 (1992).

    Google Scholar 

  14. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, M. Mackay, and P. Artursson. Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Control. Rel., 11:25–40 (1990).

    Google Scholar 

  15. M. Hu, J. Chen, D. Tran, Y. Zhu, and G. Leonardo. The Caco-2 cell monolayers as an intestinal metabolism model: Metabolism of dipeptide Phe-Pro. J. Drug Targeting, 2,79–89, 1994.

    Google Scholar 

  16. M. Bradford. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72:248–254 (1971).

    Google Scholar 

  17. D. T. Thwaites, C. D. A. Brown, B. H. Hirst, and N. L. Simmons. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basolateral membranes. J. Biol. Chem. 268:7640–42, 1993.

    Google Scholar 

  18. S. L. Abrahamse, R. J. Bindels, and C. H. van Os. The colon carcinoma cell line Caco-2 contains an H+/K+-ATPase that contributes to intracellular pH regulation. Pflugers Arch. 421:591–7 (1992).

    Google Scholar 

  19. A. J. M. Watson, S. Levine, M. Donowitz, and M. H. Montrose. Kinetics and regulation of a polarized Na+-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am. J. Physiol. 261:G229–G238 (1991).

    Google Scholar 

  20. T. Okano, K. Inui, H. Maegawa, M. Takano, and R. Hori. H+-coupled uphill transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system in rabbit intestinal brush-border membranes. J. Biol. Chem. 261:14130–14134 (1986).

    Google Scholar 

  21. V. Ganapathy and F. H. Leibach. Is intestinal peptide transport energized by a H+ gradient? Am. J. Physiol. 249:G153–G160 (1985).

    Google Scholar 

  22. D. M. Matthews and D. Burston. Uptake of a series of neutral dipeptides including L-alanyl-L-alanine, glycylglycine and glycylsarcosine by hamster jejunum in vitro. Clin. Sci., 67:541–549 (1984).

    Google Scholar 

  23. M. Sugawara, T. Toda, K. Iseki, K. Miyazaki, H. Shiroto, Y. Kondo, and J. Uchino. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit. J. Pharm. Pharmacol., 44(12):968–972 (1992).

    Google Scholar 

  24. T. Iwatsubo, Y. Miyamoto, Y. Sugiyama, H. Yuasa, and T. Iga. Effects of potential damaging agents on the microclimate-pH in the rat jejunum. J. Pharm. Sci., 75(12):1162–1165 (1986).

    Google Scholar 

  25. J. Chen, Y. Zhu, A. H. Dantzig, R. E. Stratford, Jr., M. Hu. Transcellular transport of cephalexin in Caco-2 cell monolayers. Pharm. Res. S181, 1993.

  26. J. Dyer, R. B. Beechey, J. P. Gorvel, R. T. Smith, R. Wootton, and S. P. Shirazi-Beechey. Glycyl-L-proline transport in rabbit enterocyte basolateral membrane vesicles. Biochem. J., 269:565–571 (1990).

    Google Scholar 

  27. M. Hu and R. T. Borchardt. Transport of a Large Neutral Amino Acid in a Human Intestinal Epithelial Cell Line (Caco-2): Uptake and Efflux of Phenylalanine. Biochim. Biophys. Acta, 1135, 233–244 (1992).

    Google Scholar 

  28. J. Chen, Y. Zhu, and M. Hu. Mechanisms and Kinetics of Uptake and Efflux of L-Methionine in an Intestinal Epithelial Model (Caco-2). J. Nutr, accepted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Chen, J., Zhu, Y. et al. Mechanism and Kinetics of Transcellular Transport of a New β-Lactam Antibiotic Loracarbef Across an Intestinal Epithelial Membrane Model System (Caco-2). Pharm Res 11, 1405–1413 (1994). https://doi.org/10.1023/A:1018935704693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018935704693

Navigation