Skip to main content
Log in

Pharmacokinetics and Bioinversion of Ibuprofen Enantiomers in Humans

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

An open, randomized, six-way crossover study was conducted in 12 healthy males to assess pharmacokinetics and bioinversion of ibuprofen enantiomers. The mean plasma terminal half-life (t1/2) of R(–)ibuprofen was 1.74 hr when intravenously infused as a racemic mixture and was 1.84 hr when intravenously infused alone. The mean t1/2 of S( + )ibuprofen was 1.77 hr when dosed as S( + )ibuprofen. Examination of values of both the absorption and disposition parameters of R(–)ibuprofen revealed that the kinetics of R(–)ibuprofen were not altered by concurrent administration of S( + )ibuprofen. In this study, there was little or no presystemic inversion of R(–)ibuprofen to its S( + )isomer. Also, 69% of the intravenous dose of R(–)ibuprofen was systemically inverted and 57.6% of the oral dose of R(–)ibuprofen lysinate was bioavailable as S ( + )ibuprofen. These results indicate that the bioinversion of R(–)ibuprofen administered orally is mainly systemic. Because bioinversion of R(–)ibuprofen is not complete, S( + )ibuprofen produced higher bioavailability of S( + )ibuprofen (92.0%) than either racemic ibuprofen (70.7%) or R(–)ibuprofen (57.6%). However, bioavailability of R(–)ibuprofen (83.6%) when dosed alone was not significantly different from when dosed as racemic mixture (80.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. F. N. Mills, S. S. Adams, E. E. Cliffe, W. Dickinson and J. S. Nicholson. The metabolism of ibuprofen. Xenobiotica 3:589–598 (1973).

    Google Scholar 

  2. W. J. Wechter, D. G. Loughhead, R. J. Reischer, G. J. VanGiessen and D. G. Kaiser. Enzymatic inversion at saturated carbon: Nature and mechanism of the inversion of R(−)-p-isobutyl hydratropic acid. Biochem. Biophys. Res. Commun. 61:833–837 (1974).

    Google Scholar 

  3. D. G. Kaiser, G. J. VanGiessen, R. J. Reischer and W. J. Wechter. Isomeric inversion of ibuprofen (R)-enantiomer in humans. J. Pharm. Sci. 65:269–273 (1976).

    Google Scholar 

  4. E. J. D. Lee, K. Williams, R. Day, G. Graham and D. Champion. Stereoselective disposition of ibuprofen enantiomers in man. Br. J. Clin. Pharmacol. 19:669–674 (1985).

    Google Scholar 

  5. R. J. Bopp, J. F. Nash, A. S. Ridolfo and E. R. Shephard. Stereoselective inversion of (R)-(−)-benoxaprofen to the (S)-(+)-enantiomer in humans. Drug Metab. Dispos. 7:356–359 (1979).

    Google Scholar 

  6. R. G. Simmonds, T. J. Woodage, S. M. Duff and J. N. Green. Stereospecific inversion of (R)-(−)-benoxaprofen in rat and man. Eur. J. Drug Metab. Pharmacokinet. 5:169–172 (1980).

    Google Scholar 

  7. A. Rubin, M. P. Knadler and P. P. K. Ho, L. D. Bechtol and R. L. Wolen. Stereoselective inversion of (R)-fenoprofen in humans. J. Pharm. Sci. 74:82–84 (1985).

    Google Scholar 

  8. S. Fournel and J. Caldwell. The metabolic chiral inversion of 2-phenylpropionic acid in rat, mouse and rabbit. Biochem. Pharmacol. 35:4153–4159 (1986).

    Google Scholar 

  9. V. Rossetti, A. Lombard, M. Buffa and M. C. Cassone. Studies on the Stereoisomeric inversion of ketoprofen in rats. IRCS Med. Sci. 14:256–257 (1986).

    Google Scholar 

  10. P. J. Meffin, B. C. Sallustio, Y. J. Purdie and M. E. Jones. Enantioselective disposition of 2-arylpropionic acid non-steroidal anti-inflammatory drugs. I. 2-Phenylpropionic acid disposition. J. Pharmacol. Exp. Ther. 238:280–287 (1986).

    Google Scholar 

  11. P. J. Hayball and P. J. Meffin. Enantioselective disposition of 2-arylpropionic acid non-steroidal anti-inflammatory drugs. III. Fenoprofen disposition. J. Pharmacol. Exp. Ther. 240:631–636 (1987).

    Google Scholar 

  12. A. Abas and P. J. Meffin. Enantioselective disposition of 2-arylpropionic acid non-steroidal anti-inflammatory drugs. IV. Ketoprofen disposition. J. Pharmacol. Exp. Ther. 240:637–641 (1987).

    Google Scholar 

  13. M. J. Bartels and F. A. Smith. Stereochemical inversion of haloxyfop in the Fischer 344 rat. Drug Metab. Dispos. 17:286–291 (1989).

    Google Scholar 

  14. S. S. Adams, P. Bresloff and C. G. Mason. Pharmacological differences between the optical isomers of ibuprofen: Evidence for metabolic inversion of the (−)-isomer. J. Pharm. Pharmacol. 28:256–257 (1976).

    Google Scholar 

  15. A. J. Hutt and J. Caldwell. The metabolic chiral inversion of 2-arylpropionic acids—a novel route with pharmacological consequences. J. Pharm. Pharmacol. 35:693–704 (1983).

    Google Scholar 

  16. J. Caldwell, A. J. Hutt and S. Fournel-Gigleux. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem. Pharmacol. 37:105–114 (1988).

    Google Scholar 

  17. A. J. Hutt and J. Caldwell. The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin. Pharmacokinet. 9:371–377 (1984).

    Google Scholar 

  18. Y. Nakamura, T. Yamaguchi, S. Hashimoto, S. Iwatani and Y. Nakagawa. Optical isomerization mechanism of R(−)-hydratropic acid derivatives. J. Pharmacobiol. Dynamics. 4:S1 (1981).

    Google Scholar 

  19. K. Williams, R. Day, R. Knihinicki and A. Duffield. The stereoselective uptake of ibuprofen enantiomers into adipose tissue. Biochem. Pharmacol. 35:3403–3405 (1986).

    Google Scholar 

  20. R. D. Knihinicki, K. M. Williams and R. O. Day. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs. I. In vitro studies of ibuprofen and flurbiprofen. Biochem. Pharmacol. 38:4389–4395 (1989).

    Google Scholar 

  21. S. R. Cox. Effect of route of administration on the chiral inversion of R(−)-ibuprofen. Clin. Pharmacol. Ther. 43:146 (1988).

    Google Scholar 

  22. F. Jamali, R. Mehvar, A. S. Russell, S. Sattari, W. W. Yakimets and J. Koo. Human pharmacokinetics of ibuprofen enantiomers following different doses and formulations: Intestinal chiral inversion. J. Pharm. Sci. 81:221–225 (1992).

    Google Scholar 

  23. S. D. Hall, A. C. Rudy, P. M. Knight and D. C. Brater. Lack of presystemic inversion of (R)-to (S)-ibuprofen in humans. Clin. Pharmacol. Ther. 53:393–400 (1993).

    Google Scholar 

  24. W. Martin, G. Koselowske, H. Toberich, TH. Kerkmann, B. Mangold and J. Augustin. Pharmacokinetics and absolute bioavailability of ibuprofen after oral administration of ibuprofen lysine in man. Biopharm. Drug Dispos. 11:265–278 (1990).

    Google Scholar 

  25. K. S. Pang and K. C. Kwan. A commentary: methods and assumptions in the kinetic estimation of metabolite formation. Drug Metab. Dispos. 11:79–84 (1983).

    Google Scholar 

  26. R. Mehvar, F. Jamali and F. M. Pasutto. Liquid-chromatographic assay of ibuprofen enantiomers in plasma. Clin. Chem. 34:493–495 (1988).

    Google Scholar 

  27. A. Avgerinos and A. J. Hutt. Determination of the enantiomeric composition of ibuprofen in human plasma by high-performance liquid chromatography. J. Chromatogr. 415:75–83 (1987).

    Google Scholar 

  28. M. L. Rocci and W. J. Jusko. LAGRAN program for area and moments in pharmacokinetic analysis. Comp. Prog. Biomed. 16:203–216 (1983).

    Google Scholar 

  29. P. Veng-Pedersen. An algorithm and computer program for deconvolution in linear pharmacokinetics. J. Pharmacokin. Biopharm. 8:463–481 (1980).

    Google Scholar 

  30. M. D. Karol and S. Goodrich. Metabolite formation pharmacokinetics: Rate and extent of metabolite formation determined by deconvolution. Pharm. Res. 5:347–351 (1988).

    Google Scholar 

  31. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982, p. 413.

    Google Scholar 

  32. K. S. Pang, W. F. Cherry, J. A. Terrell, E. H. Ulm. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation. Drug Metab. Dispos. 12:309–313 (1984).

    Google Scholar 

  33. I. A. M. DeLannoy, K. S. Pang. Effect of diffusion barrier on drug and metabolite kinetics. Drug Metab. Dispos. 15:51–58 (1987).

    Google Scholar 

  34. B. P. Imbimbo, S. Daniotti, A. Vidi, D. Foschi, F. Saporiti and L. Ferrante. Discontinuous oral absorption of cimetropium bromide, a new antispasmodic drug. J. Pharm. Sci. 75:680–684 (1986).

    Google Scholar 

  35. S. A. Kaplan, R. E. Weinfeld, C. W. Abruzzo, C. W. Abruzzo and M. Lewis. Pharmacokinetic profile of sulfisoxazole following intravenous, intramuscular, and oral administration to man. J. Pharm. Sci. 61:773–778 (1972).

    Google Scholar 

  36. P. J. Carrigan and T. R. Bates. Biopharmaceutics of drugs administered in liquid-containing dosage forms I. GI absorption of griseofulvin from an oil-in-water emulsion in the rat. J. Pharm. Sci. 62:1477 (1973).

    Google Scholar 

  37. W. S. Beck, K. Dietzel, G. Geisslinger and K. Brune. Pharmacokinetics of ibuprofen enantiomers in dogs. Chirality 3:165–169 (1991).

    Google Scholar 

  38. T. A. Baillie, W. J. Adams, D. G. Kaiser, L. S. Olanoff, G. W. Halstead, H. Harpootlian and G. J. van Giessen. Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans. J. Pharmacol. Exp. Ther. 249:517–523 (1989).

    Google Scholar 

  39. J. W. Cox, S. R. Cox, G. VanGiessen and M. J. Ruwart. Ibuprofen stereoisomer hepatic clearance and distribution in normal and fatty in situ perfused rat liver. J. Pharmacol. Exp. Ther. 232:636–643 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Rogers, J.D., Demetriades, J.L. et al. Pharmacokinetics and Bioinversion of Ibuprofen Enantiomers in Humans. Pharm Res 11, 824–830 (1994). https://doi.org/10.1023/A:1018969506143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018969506143

Navigation