Skip to main content
Log in

Drug Absorption Limited by P-Glycoprotein-Mediated Secretory Drug Transport in Human Intestinal Epithelial Caco-2 Cell Layers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The hypothesis was tested that the operation of an ATP-dependent export pump localized at the apical (brush border) surface of the intestinal epithelium may limit substrate absorption kinetics. Human intestinal Caco-2 cell-layers display saturable secretion of vinblastine from basal to apical surfaces (K m, 18.99 ± 5.55 µM; V max, 1285.9 ± 281.2 pmol cm−2 hr−1) that is inhibited by verapamil, consistent with the expression of the ATP-dependent P-glycoprotein drug efflux pump at the apical brush border membrane. Inhibition of P-glycoprotein by a variety of modulators (verapamil, 1,9-dideoxyforskolin, nifedipine, and taxotere) is associated with an increased vinblastine absorptive permeability. Vinblastine absorption displayed a nonlinear dependence upon luminal (apical) vinblastine concentration, and vinblastine absorption increased markedly at concentrations where vinblastine secretory flux was saturated (>20 µM). Upon inhibition of P-glycoprotein by verapamil and 1,9-dideoxyforskolin, vinblastine absorption increased and was linearly dependent on vinblastine concentration. The limitation of P-glycoprotein substrate absorption by active ATP-dependent export via P-glycoprotein is discussed, together with the possibility that other classes of substrate may be substrates for different ATP-dependent export pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. I. Pastan and M. M. Gottesman. Multidrug resistance. Annu. Rev. Med. 42:277–286 (1991).

    Google Scholar 

  2. J. M. Ford and W. N. Hait. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42:155–199 (1990).

    Google Scholar 

  3. C. Cordon-Cardo, J. P. O'Brian, J. Boccia, J. R. Bertino, and M. R. Melamed. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumour tissues. J. Histochem. Cytochem. 38:1277–1287 (1990).

    Google Scholar 

  4. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).

    Google Scholar 

  5. M. B. Meyers, K. W. Scotto, and F. M. Sirotnak. P-glycoprotein content and mediation of vincristine efflux: Correlation with the level of differentiation in luminal epithelium of mouse small intestine. Cancer Comm. 3:159–165 (1991).

    Google Scholar 

  6. J. Hunter, B. H. Hirst, and N. L. Simmons. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein. Br. J. Cancer 64:437–444 (1991).

    Google Scholar 

  7. P. M. Dewick. Tumour inhibitors from plants. In W. C. Evans (ed.), Trease and Evans' Pharmacognosy, 13th ed., Balliesre Tindall, London, 1989, pp. 637–656.

    Google Scholar 

  8. W. R. Leib and W. D. Stein. Biological membranes behave as non-porous polymer sheets with respect to diffusion of nonelectrolytes. Nature 224:240–243 (1967).

    Google Scholar 

  9. P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs: A pH partition hypothesis. J. Pharmacol. Exp. Ther. 119:361–369 (1957).

    Google Scholar 

  10. G. T. A. McEwan and M. L. Lucas. The effect of E.Coli STa enterotoxin on the absorption of weakly dissociable drugs from rat proximal jejunum in vivo. Br. J. Pharmacol. 101:937–943 (1990).

    Google Scholar 

  11. D. C. Taylor, J. Lynch, and D. E. Leahy. Models for intestinal permeability to drugs. In J. G. Hardy, S. S. Davis, and C. G. Wilson (eds.), Drug Delivery to the Gastrointestinal Tract, Ellis Horwood, Chichester, U.K., 1990 pp. 133–145.

    Google Scholar 

  12. M. Horio, K.-V. Chin, S. J. Currier, S. Goldenberg, C. Williams, I. Pastan, M. M. Gottesman, and J. Handler. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby kidney cell epithelia. J. Biol. Chem. 264:14880–14884 (1989).

    Google Scholar 

  13. J. Hunter, B. H. Hirst, and N. L. Simmons. Transepithelial vinblastine secretion mediated by P-glycoprotein is inhibited by forskolin derivatives. Biochem. Biophys. Res. Commun. 181:671–676 (1991).

    Google Scholar 

  14. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    Google Scholar 

  15. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterisation of the human colon carcinoma cell-line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  16. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Comm. 175:880–885 (1991).

    Google Scholar 

  17. M. Pinto, S. Robine-Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. LaCroix, P. Simon-Assman, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarisation of the human colon carcinoma line Caco-2 in culture. Biol. Cell. 47:323–330 (1983).

    Google Scholar 

  18. I. Mohrmann, M. Mohrmann, J. Biber, and H. Murer. Sodium dependent transport of Pi by an established intestinal epithelial cell-line (Caco-2). Am. J. Physiol. 250:G323–G330 (1986).

    Google Scholar 

  19. K. I. Inui, M. Yamamoto, and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal cell-line Caco-2: Specific transport systems in the apical and basolateral membranes. J. Pharmacol. Exp. Ther. 261:195–201 (1992).

    Google Scholar 

  20. M. Horio, E. Lovelace, I. Pastan, and M. M. Gottesman. Agents which reverse multidrug resistance are inhibitors of vinblastine transport by isolated vesicles. Biochem. Biophys. Acta 1061:106–110 (1991).

    Google Scholar 

  21. M. Naito and T. Tsuruo. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res. 49:1452–1455 (1989).

    Google Scholar 

  22. J. Hunter, B. H. Hirst, and N. L. Simmons. Transepithelial transport of vinblastine by cultured canine renal epithelia (MDCK). J. Physiol. 446:28-29P (1991).

    Google Scholar 

  23. J. A. Plumb, R. Milroy, and S. B. Kaye. The activity of verapamil as a resistance modifier in vitro in drug resistant human tumour cell lines is not stereospecific. Biochem. Pharmacol. 39:787–792 (1990).

    Google Scholar 

  24. F. Gueritte-Voegelain, D. Guenard, F. Lavelle, M.-T. Le Goff, L. Mangatal, and P. Potier. Relationships between the structure of taxol analogues and their antimitotic activity. J. Med. Chem. 34:992–998 (1991).

    Google Scholar 

  25. E. K. Rowinsky, L. A. Cazenave, and R. C. Donehower. Taxol: A novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82:1247–1259 (1990).

    Google Scholar 

  26. W. H. M. Peters and H. M. J. Roelofs. Biochemical characterisation of resistance to mitoxantrone and adriamycin in Caco-2 human adenocarcinoma cells: A possible role for glutathione S-transferases. Cancer Res. 52:1886–1890 (1992).

    Google Scholar 

  27. K. Gerzon, S. Ochs, and G. C. Todd. Polarity of vincristine (VCR), vindesine (VDS), and vinblastine (VLB) in relation to neurological effects. Proc. AACR Abstr. 186:46 (1979).

    Google Scholar 

  28. D. C. Tosteson and J. F. Hoffman. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44:169–194 (1960).

    Google Scholar 

  29. R. C. Sharma, S. Inoue, J. Roitelman, R. T. Schimke, and R. D. Simon. Peptide transport by the multidrug resistance pump. J. Biol. Chem. 267:5731–5734 (1992).

    Google Scholar 

  30. S. C. Hyde, P. Emsley, M. Hartshorn, M. M. Mimmack, U. Gileadi, S. R. Pearce, M. P. Gallacher, R. Hubbard, and C. F. Higgins. Structural and functional relationships associated with cystic fibrosis, multi-drug resistance and bacterial transport. Nature 346:362–365 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, J., Hirst, B.H. & Simmons, N.L. Drug Absorption Limited by P-Glycoprotein-Mediated Secretory Drug Transport in Human Intestinal Epithelial Caco-2 Cell Layers. Pharm Res 10, 743–749 (1993). https://doi.org/10.1023/A:1018972102702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018972102702

Navigation