Skip to main content
Log in

Application of the Dispersion Model for Description of the Outflow Dilution Profiles of Noneliminated Reference Indicators in Rat Liver Perfusion Studies

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The dispersion model (DM) is a stochastic model describing the distribution of blood-borne substances within organ vascular beds. It is based on assumptions of concurrent convective and random-walk (pseudodiffusive) movements in the direction of flow, and is characterized by the mean transit time \(\left( {\overline {\text{t}} } \right)\) and the dispersion number (inverse Peclet number), DN. The model is used with either closed (reflective) boundary conditions at the inflow and the outflow point (Danckwerts conditions) or a closed condition at the inflow and an open (transparent) condition at the outflow (mixed conditions). The appropriateness of DM was assessed with outflow data from single-pass perfused rat liver multiple indicator dilution (MID) experiments, with varying lengths of the inflow and outflow catheters. The studies were performed by injection of bolus doses of 51Cr-labeled red blood cells (vascular indicator),125I-labeled albumin and [14C] sucrose (interstitual indicators), and [3H]2O (whole tissue indicator) into the portal vein at a perfusion rate of 12 ml/min. The outflow profiles based on the DM were convolved with the transport function of the catheters, then fitted to the data. A fairly good fit was obtained for most of the MID curve, with the exception of the late-in-time data (prolonged tail) beyond \(3 \times \overline {\text{t}}\). The fitted DNs were found to differ among the indicators, and not with the length of the inflow and outflow catheters. But the differences disappeared when a delay parameter, t0=4.1 ± 0.7 sec \(\left( {\overline x \pm SD} \right)\), was included as an additional fitted parameter for all of the indicators except water. Using the short catheters, the average DNfor the model with delay was 0.31 ± 0.13 for closed and 0.22 ± 0.07 for mixed boundary conditions, for all reference indicators. Mean transit times and the variances of the fitted distributions were always smaller than the experimental ones (on average, by 6.8 ± 3.7% and 58 ± 19%, respectively). In conclusion, the DM is a reasonable descriptor of dispersion for the early-in-time data and not the late-in-time data. The existence of a common DN for all non-eliminated reference indicators suggests that intrahepatic dispersion depends only on the geometry of the vasculature rather than the diffusional processes. The role of the nonsinusoidal (“large”) vessels can be partly represented by a simple delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. S. McCuskey. The hepatic microvascular system. In I. M. Arias (ed.), The Liver, Raven Press, New York, 1994, pp. 1089–1106.

    Google Scholar 

  2. A. Koo, I. Y. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat. Quant. J. Exp. Physiol. Cognate Med. Sci. 60:261–266 (1975).

    Article  CAS  Google Scholar 

  3. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  4. C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling. Barrier-limited and flow-limited distribution. Circ. Res. 27:739–764 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. C. A. Goresky. Kinetic interpretation of hepatic multiple-indicator dilution studies. Am. J. Physiol. 245:G1–G12 (1983).

    CAS  PubMed  Google Scholar 

  6. S. S. Kety. The measurement of regional circulation by local clearance of radioactive sodium. Am. Heart J. 38:321–328 (1949).

    Article  CAS  PubMed  Google Scholar 

  7. K. Winkler, S. Keiding, and N. Tygstrup. Clearance as a quantitative measure of liver function. In R. P. P. Paumgartner (ed.), The Liver: Quantitative Aspects of Structure and Function, S. Karger, Basel, 1973, pp. 144–155.

    Google Scholar 

  8. A. B. Ahmad, P. N. Bennett, and M. Rowland. Influence of route of hepatic administration on drug availability. J. Pharmacol. Exp. Ther. 230:718–725 (1984).

    CAS  PubMed  Google Scholar 

  9. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well stirred” and “parallel-tube” models. J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  11. D. L. Miller, C. S. Zanolli, and J. J. Gumucio. Quantitative morphology of the sinusoids of the hepatic acinus. Quantimet analysis of rat liver. Gastroenterology 76:965–969 (1979).

    CAS  PubMed  Google Scholar 

  12. M. S. Roberts and M. Rowland. Hepatic elimination-dispersion model. J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  14. M. Weiss. A note on the interpretation of tracer dispersion in the liver. J. Theoret. Biol. 184:1–6 (1997).

    Article  CAS  Google Scholar 

  15. R. Tirona, A. J. Schwab, W. Geng, and K. S. Pang. Comparison of the Dispersion and Goresky models in outflow dilution profiles from multiple indicator rat liver studies. Drug Metab. Dispos. 26:465–475 (1998).

    CAS  PubMed  Google Scholar 

  16. P. V. Danckwerts. Continuous flow systems: distribution of residence times. Chem. Eng. Sci. 2:1–13 (1953).

    Article  CAS  Google Scholar 

  17. G. I. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. Lond. Ser. A 219:186–203 (1953).

    Article  CAS  Google Scholar 

  18. G. I. Taylor. The dispersion of matter in turbulent flow through a pipe. Proc. Roy. Soc. Lond. Ser. A 223:446–468 (1954).

    Article  CAS  Google Scholar 

  19. A Griffiths. On the movement of a coloured index along a capillary tube, and its application to the measurement of the circulation of water in a closed circuit. Proc. Phys. Soc. 23:190–197 (1911).

    Google Scholar 

  20. W. Perl and F. P. Chinard. A convection-diffusion model of indicator transport through an organ. Circ. Res. 22:273–298 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. C. W. Sheppard and L. J. Savage. The random walk problem in relation to the physiology of circulatory mixing. Phys. Rev. 83:489–490 (1951).

    Google Scholar 

  22. Z.-S. Cai, B. A. Luxon, and E. L. Forker. Intralobular zonal heterogeneity and hepatic indicator dilution curves. Am. J. Physiol. 268:G189–G199 (1995).

    CAS  PubMed  Google Scholar 

  23. S. H. Audi, C. A. Dawson, J. H. Linehan, G. S. Krenz, S. B. Ahlf, and D. L. Roerig. An interpretation of 14C-urea and 14C-primidone extraction in isolated rabbit lungs. Ann. Biomed. Eng. 24:337–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. C. A. Goresky and M. Silverman. Effect of the correction of catheter distortion on calculated liver sinusoidal volumes. Am. J. Physiol. 207:883–892 (1964).

    CAS  PubMed  Google Scholar 

  25. A. M. Evans, Z. Hussein, and M. Rowland. Influence of albumin on the distribution and elimination kinetics of diclofenac in the isolated perfused rat liver: analysis by the impulse-response technique and the dispersion model. J. Pharm. Sci. 82:421–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. J. Pharmacokin. Biopharm. 5:655–680 (1977).

    Article  CAS  Google Scholar 

  27. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats. J. Pharmacol. Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  28. W. P. Geng, A. J. Schwab, C. A. Goresky, and K. S. Pang. Carrier-mediated uptake and excretion of bromosulfophthalein-glutathione in perfused rat liver: a multiple indicator dilution study. Hepatology 22:1188–1207 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. N. Xu, A. Chow, C. A. Goresky, and K. S. Pang. Effects of retrograde flow on measured blood volume, Disse space, intracellular water space and drug extraction in the perfused rat liver: characterization by the multiple indicator dilution technique. J. Pharmacol. Exp. Ther. 254:914–925 (1990).

    CAS  PubMed  Google Scholar 

  30. M. V. St-Pierre, A. J. Schwab, C. A. Goresky, W. F. Lee, and K. S. Pang. The multiple-indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions. Hepatology 9:285–296 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. K. S. Pang, W. F. Lee, W. F. Cherry, V. Yuen, J. Accaputo, S. Fayz, A. J. Schwab, and C. A. Goresky. Effects of perfusate flow rate on measured blood volume, Disse space, intracellular water space, and drug extraction in the perfused rat liver preparation: characterization by the multiple indicator dilution technique. J. Pharmacokin. Biopharm. 16:595–632 (1988).

    Article  CAS  Google Scholar 

  32. K. S. Pang, F. Barker, III, A. J. Schwab, and C. A. Goresky. Demonstration of rapid entry and a cellular binding space for salicylamide in perfused rat liver: a multiple indicator dilution study. J. Pharmacol. Exp. Ther. 270:285–295 (1994).

    CAS  PubMed  Google Scholar 

  33. M. V. St-Pierre, P. I. Lee, and K. S. Pang. A comparative investigation of hepatic clearance models: predictions of metabolite formation and elimination. J. Pharmacokin. Biopharm. 20:105–145 (1992).

    Article  CAS  Google Scholar 

  34. J. B. Bassingthwaighte. A concurrent flow model for extraction during transcapillary passage. Circ. Res. 35:483–503 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. J. B. Bassingthwaighte, I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange. Ann. Biomed. Eng. 20:687–725 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. L. P. Rivory, M. S. Roberts, and S. M. Pond. Axial tissue diffusion can account for the disparity between current models of hepatic elimination for lipophilic drugs. J. Pharmacokin. Biopharm. 20:19–61 (1992).

    Article  CAS  Google Scholar 

  37. B. A. Luxon and R. A. Weisiger. Extending the multiple indicator dilution method to include slow intracellular diffusion. Math. Biosci. 113:211–230 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. B. A. Luxon and R. A. Weisiger. A new method for quantitating intracellular transport: application to the thyroid hormone 3,5,3′-triiodothyronine. Am. J. Physiol. 263:G733–G741 (1992).

    CAS  PubMed  Google Scholar 

  39. C. Sheppard. Basic Principles of the Tracer Method, Wiley, New York, 1962.

    Google Scholar 

  40. T. R. Harris and E. V. Newman. An analysis of mathematical models of circulatory indicator-dilution curves. J. Appl. Physiol. 28:840–850 (1970).

    CAS  PubMed  Google Scholar 

  41. A. J. Schwab. Extension of the theory of the multiple-indicator dilution technique to metabolic systems with an arbitrary number of rate constants. Math. Biosci. 71:57–79 (1984).

    Article  CAS  Google Scholar 

  42. M. R. Gray and Y. K. Tam. The series-compartment model for hepatic elimination. Drug. Metab. Dispos. 15:27–31 (1987).

    CAS  PubMed  Google Scholar 

  43. C. Cobelli, M. P. Saccomani, E. Ferannini, R. A. Defronzo, R. Gelfand, and R. Bonadonna. A compartmental model to quantitate in vivo glucose transport in the human forearm. Am. J. Physiol. 257:E943–E958 (1989).

    CAS  PubMed  Google Scholar 

  44. M. E. Wise. Tracer dilution curves in cardiology and random walk and lognormal distributions. Acta Physiol. Pharmacol. Neerl. 14:175–204 (1966).

    CAS  PubMed  Google Scholar 

  45. J. B. Bassingthwaighte, F. H. Ackerman, and E. H. Wood. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415 (1966).

    Article  CAS  PubMed  Google Scholar 

  46. C. P. Rose, C. A. Goresky, P. Belanger, and M. J. Chen. Effect of vasodilation and flow rate on capillary permeability surface product and interstitial space size in the coronary circulation. A frequency domain technique for modeling multiple dilution data with Laguerre functions. Circ. Res. 47:312–328 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. S. E. Salcudean, P. R. Belanger, C. A. Goresky, and C. P. Rose. The use of Laguerre functions for parameter identification in a distributed biological system. IEEE Trans. Biomed. Eng. 28:767–775 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. H. Thompson, C. Starmer, R. Whalen, and H. MacIntosh. Indicator transit time considered as a gamma variate. Circ. Res. 14:502–515 (1964).

    Article  PubMed  Google Scholar 

  49. W. Weiss. Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol. 25:695–702 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. R. Rowlett and T. Harris. A comparative study of organ models and numerical techniques for the evaluation of capillary permeability from multiple-indicator data. Math. Biosci. 29:273–298 (1976).

    Article  Google Scholar 

  51. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination. J. Pharmacokin. Biopharm. 16:41–83 (1988).

    Article  CAS  Google Scholar 

  52. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 2. Steady-state considerations—influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity. J. Pharmacokin. Biopharm. 14:261–288 (1986).

    Article  CAS  Google Scholar 

  53. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 3. Application to metabolite formation and elimination kinetics. J. Pharmacokin. Biopharm. 14:289–308 (1986).

    Article  CAS  Google Scholar 

  54. K. Ueda, K. Yamaoka, M. E. Rodriguez, A. Shibukawa, and T. Nakagawa. Enantioselective local disposition of semotiadil (R-enantiomer) and levosemotiadil (S-enantiomer) in perfused rat liver. Drug Metab. Dispos. 25:281–286 (1997).

    CAS  PubMed  Google Scholar 

  55. F. J. Burczynski, B. A. Luxon, and R. A. Weisiger. Intrahepatic blood flow distribution in the perfused rat liver: effect of hepatic artery perfusion. Am. J. Physiol. 271:G561–G567 (1996).

    CAS  PubMed  Google Scholar 

  56. C. A. Goresky, A. J. Schwab, and C. P. Rose. Xenon handling in the liver: red cell capacity effect. Circ. Res. 63:767–778 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. R. B. King, A. Deussen, G. M. Raymond, and J. B. Bassingthwaighte. A vascular transport operator. Am. J. Physiol. 265:H2196–H2208 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Y. Yano, K. Yamaoka, Y. Aoyama, and H. Tanaka. Two-compartment dispersion model for analysis of organ perfusion system of drugs by fast inverse Laplace transform (FILT). J. Pharmacokin. Biopharm. 17:179–202 (1989).

    Article  CAS  Google Scholar 

  59. J. M. Diaz-García, A. M. Evans, and M. Rowland. Application of the axial dispersion model of hepatic drug elimination to the kinetics of diazepam in the isolated perfused rat liver. J. Pharmacokin. Biopharm. 20:171–193 (1992).

    Article  Google Scholar 

  60. M. S. Roberts, S. Frazer, A. Wagner, and L. McLeod. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 1. Effect of changes in perfusate flow and albumin concentration on sucrose and taurocholate. J. Pharmacokin. Biopharm. 18:209–234 (1990).

    Article  CAS  Google Scholar 

  61. H. Yasui, K. Yamaoka, T. Fukuyama, and T. Nakagawa. Effect of liver intoxication by carbon tetrachloride on hepatic local disposition of oxacillin using moment characteristics as index. Drug Metab. Dispos. 23:779–785 (1995).

    CAS  PubMed  Google Scholar 

  62. Y. Ohata, K. Yamaoka, H. Yasui, and T. Nakagawa. Consideration on moments of outflow profile in liver perfusion system with change in perfusate flow rate using oxacillin as model drug. Biol. Pharm. Bull. 19:83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. M. S. Roberts, S. Fraser, A. Wagner, and L. McLeod. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 2. Effect of pharmacological agents, retrograde perfusions, and enzyme inhibition on Evans blue, sucrose, water, and taurocholate. J. Pharmacokin. Biopharm. 18:235–258 (1990).

    Article  CAS  Google Scholar 

  64. R. H. Smallwood, D. J. Morgan, G. W. Mihaly, D. B. Jones, and R. A. Smallwood. Effect of plasma protein binding on elimination of taurocholate by isolated perfused rat liver: comparison of venous equilibrium, undistributed and distributed sinusoidal, and dispersion models. J. Pharmacokin. Biopharm. 16:377–396 (1988).

    Article  CAS  Google Scholar 

  65. M. S. Ching, D. J. Morgan, and R. A. Smallwood. Models of hepatic elimination: Implications from studies of the simultaneous elimination of taurocholate and diazepam by isolated rat liver under varying conditions of binding. J. Pharmacol. Exp. Ther. 250:1048–1054 (1989).

    CAS  PubMed  Google Scholar 

  66. Z. Hussein, A. M. Evans, and M. Rowland. Physiologic models of hepatic drug clearance: influence of altered protein binding on the elimination of diclofenac in the isolated perfused rat liver. J. Pharm. Sci. 82:880–885 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. L. Bass. Convection-dispersion modeling of hepatic elimination. J. Pharm. Sci. 75:321–322 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. C. A. Goresky, G. C. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver. The concentrative transport of rubidium-86. J. Clin. Invest. 52:975–990 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. J. Kuikka, M. Levin, and J. B. Bassingthwaighte. Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250:H29–H42 (1986).

    CAS  PubMed Central  PubMed  Google Scholar 

  70. R. B. King, G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng. 24:352–372 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. J. B. Bassingthwaighte and D. A. Beard. Fractal 15O-labeled water washout from the heart. Circ. Res. 77:1212–1221 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, A.J., Geng, W. & Pang, K.S. Application of the Dispersion Model for Description of the Outflow Dilution Profiles of Noneliminated Reference Indicators in Rat Liver Perfusion Studies. J Pharmacokinet Pharmacodyn 26, 163–181 (1998). https://doi.org/10.1023/A:1020557706994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020557706994

Navigation