Skip to main content
Log in

Mathematical Modeling of Circadian Cortisol Concentrations Using Indirect Response Models: Comparison of Several Methods

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Six mathematical functions to describe the chronobiology of cortisol concentrations were assessed. Mean data from a dose-proportionality study of inhaled fluticasone propionate were fitted with an indirect response model using various biorhythmic functions (single cosine, dual ramps, dual zero-order, dual cosines, and Fourier series with 2 and n-harmonics) for production rate. Data with known parameters and random variation were also generated and fitted using the ADAPT II program. Fitted parameters, model estimation criteria, and runs tests were compared. Models with preassigned functions: the dual ramps, the dual zero-order and the dual cosines provide maximum and minimum times for cortisol release rate, were suitable for describing asymmetric circadian patterns and yielding IC50 values. Fourier analysis differs from the other methods in that it uses the placebo data to recover equations for cortisol secretion rate rather than by postulation. Nonlinear regression for Fourier analysis, instead of the L 2 -norm method, was useful to characterize the baseline cortisol data but was restricted to a maximum of two harmonics. Apart from the single cosine function, which predicts symmetrical cortisol concentrations, all methods were satisfactory in describing the baseline and suppressed cortisol concentrations. On the other hand, Fourier series with L 2 -norm produced the best unbiased estimate for baseline patterns. The Fourier method is flexible, accurate, and can be extended to other drug-induced changes in normal periodic rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Lemmer and G. Labrecque. Chronopharmacology and chronotherapeutics: definitions and concepts. Chronobiol. Int. 4:319–329 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).

    Article  CAS  Google Scholar 

  3. W. J. Jusko, W. R. Slaunwhite, and T. Aceto. Partial pharmacodynamic model for circadian-episodic secretion of cortisol in man. J. Clin. Endocrinol. Metab. 40:278–289 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. B. P. Schimmer and K. L. Parker. In J. C. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, and A. C. Gilman (eds.), The Pharmacological Basis of Therapeutics, 9th ed. 1996, pp. 1459–1485.

  5. K. L. Slayter, E. A. Ludwig, K. H. Lew, E. Middleton, J. F. Ferry, and W. J. Jusko. Oral contraceptive effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 59:312–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. S. Rohatagi, A. Bye, C. Falcoz, A. E. Mackie, B. Meibohm, H. Mollmann, and H. Derendorf. Dynamic modeling of cortisol reduction after inhaled administration of fluticasone propionate. J. Clin. Pharmacol. 36:938–941 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. M. A. Eldon and M. R. Feng. Modeling the circadian secretion of prolactin: Application to pharmacodynamic assessment of a dopamine agonist antipsychotic drug. (Abstract). Clin. Pharmacol. Ther. 63:183 (1998).

    Google Scholar 

  8. G. M. L. Meno-Tetang, R. A. Blum, K. E. Schwartz, and W. J. Jusko. Pharmacodynamic modeling of dehydroepiandrosterone (DHEA), DHEA-SO4 and cortisol suppression by prednisolone. Pharm. Res. 14:S609 (1997).

    Google Scholar 

  9. S. Rohatagi, A. Bye, A. E. Mackie, and H. Derendorf. Mathematical modeling of cortisol circadian rhythm and cortisol suppression. Eur. J. Pharm. Sci. 4:341–350 (1996).

    Article  CAS  Google Scholar 

  10. A. Chakraborty, R. A. Blum, D. L. Cutler, S. Mis, and W. J. Jusko. Pharmacokinetic and adrenal interactions between recombinant human interleukin-10 and prednisone. J. Clin. Pharmacol., 39:624–635 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. W. Krzyzanski, A. Chakraborty, and W. J. Jusko. Algorithm for application of Fourier analysis for biorhythmic baselines of pharmacodynamic indirect response models. Chronobiol. Int., accepted (1999).

  12. D. Z. D'Argenio, and A. Schumitzky. ADAPT II User's Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software, Biomedical Simulations Resource, Los Angeles, 1997.

    Google Scholar 

  13. N. R. Draper, and H. Smith. In Applied Regression Analysis, 2nd ed., John Wiley & Sons, New York ch. 3, 1981.

    Google Scholar 

  14. J. J. Lima, J. Giller, J. J. Mackichan, and W. J. Jusko. Bioavailability of hydrocortisone retention enemas in normal subjects. Am. J. Gastroenterol. 73:232–237 (1980).

    CAS  PubMed  Google Scholar 

  15. H. Derendorf, H. Mollmann, J. Barth, C. Mollmann, S. Tunn, and M. Krieg. Pharmacokinetics and oral bioavailability of hydrocortisone. J. Clin. Pharmacol. 31:473–476 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. B. Lemmer. Chronopharmacological aspects of PK/PD modeling. Int. J. Clin. Pharm. Therap. 35:458–464 (1997).

    CAS  Google Scholar 

  17. A. Mattes, K. Witte, W. Hohmann, and B. Lemmer. PHARMFIT-a nonlinear fitting program for pharmacology. Chronobiology Int. 8:460–476 (1991).

    Article  CAS  Google Scholar 

  18. P. Zuther, K. Witte, and B. Lemmer. ABPM and CV SORT: An easy-to-use software package for detailed analysis of data from ambulatory blood pressure monitoring. Blood Pressure Monit. 1:347–354 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Krzyzanski, W. & Jusko, W.J. Mathematical Modeling of Circadian Cortisol Concentrations Using Indirect Response Models: Comparison of Several Methods. J Pharmacokinet Pharmacodyn 27, 23–43 (1999). https://doi.org/10.1023/A:1020678628317

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020678628317

Navigation