Skip to main content
Log in

Prediction of the Oral Absorption of Low-Permeability Drugs Using Small Intestine-Like 2/4/A1 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To characterize the paracellular route of 2/4/A1 monolayers and to compare the permeabilities of incompletely absorbed oral drugs in 2/4/A1 with those in Caco-2 monolayers.

Methods. The cells were cultivated on permeable supports. The 2/4/A1 expression of genes associated with tight junctions was compared with that in the small intestine using RT-PCR. The aqueous pore radii were determined using paracellular marker molecules. The permeabilities of a series of incompletely absorbed drugs (defined as having a fraction absorbed 0 to 80%) after oral administration to humans were studied.

Results. Occludin and claudin 1 and 3 were expressed in 2/4/A1. The pore radius of 2/4/A1 was 9.0 ± 0.2 Å, which is similar to that in the human small intestine, although the pore radius was smaller (3.7 ± 0.1 Å) in Caco-2. The relationship between permeability and fraction absorbed of 13 drugs was stronger in 2/4/A1 than in Caco-2. The relationships were used to predict the intestinal absorption of another seven drugs. The prediction was more accurate in 2/4/A1 (RMSE = 15.6%) than in Caco-2 (RMSE = 21.1%). Further, Spearman's rank coefficient between FA and permeability was higher in 2/4/A1.

Conclusion. The improved 2/4/A1 cell culture model has a more in vivo-like permeability and predicted the oral absorption of incompletely absorbed drugs better than Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 14:1655-1658 (1997).

    Google Scholar 

  2. A. K. Mandagere, T. N. Thompson, and K. K. Hwang. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. J. Med. Chem. 45:304-311 (2002).

    Google Scholar 

  3. W. Rubas, M. E. Cromwell, Z. Shahrokh, J. Villagran, T. N. Nguyen, M. Wellton, T. H. Nguyen, and R. J. Mrsny. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J. Pharm. Sci. 85:165-169 (1996).

    Google Scholar 

  4. M. C. Gres, B. Julian, M. Bourrie, V. Meunier, C. Roques, M. Berger, X. Boulenc, Y. Berger, and G. Fabre. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm. Res. 15:726-733 (1998).

    Google Scholar 

  5. G. M. Pauletti, F. W. Okumu, and R. T. Borchardt. Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharm. Res. 14:164-168 (1997).

    Google Scholar 

  6. P. Artursson, A.-L. Ungell, and J.-E. LÖfroth. Selective paracellular permeability in two models of intestinal absorption: Cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 8:1123-1129 (1993).

    Google Scholar 

  7. H. LennernÄs, K. Palm, U. Fagerholm, and P. Artursson. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm. 127:103-107 (1996).

    Google Scholar 

  8. S. Tavelin, J. Taipalensuu, F. HallbÖÖk, K. Vellonen, V. Moore, and P. Artursson. An improved cell culture model based on 2/4/A1 cell monolayers for studies of intestinal drug transport. Characterization of Transport Routes. Pharm Res. 20:373-387 (2003).

    Google Scholar 

  9. S. Tavelin, V. Milovic, G. Ocklind, S. Olsson, and P. Artursson. A conditionally immortalized epithelial cell line for studies of intestinal drug transport. J. Pharmacol. Exp. Ther. 290:1212-1221 (1999).

    Google Scholar 

  10. A. Collett, E. Sims, D. Walker, Y. L. He, J. Ayrton, M. Rowland, and G. Warhurst. Comparison of HT29-18-C1 and Caco-2 cell lines as models for studying intestinal paracellular drug absorption. Pharm. Res. 13:216-221 (1996).

    Google Scholar 

  11. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 83:1529-1536 (1994).

    Google Scholar 

  12. L. S. Gan, S. Yanni, and D. R. Thakker. Modulation of the tight junctions of the Caco-2 cell monolayers by H2-antagonists. Pharm. Res. 15:53-57 (1998).

    Google Scholar 

  13. K. Lee and D. R. Thakker. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J. Pharm. Sci. 88:680-687 (1999).

    Google Scholar 

  14. V. Pade and S. Stavchansky. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm. Res. 14:1210-1215 (1997).

    Google Scholar 

  15. S. D. Flanagan, L. H. Takahashi, X. Liu, and L. Z. Benet. Contributions of saturable active secretion, passive transcellular, and paracellular diffusion to the overall transport of furosemide across adenocarcinoma (Caco-2) cells. J. Pharm. Sci. 91:1169-1177 (2002).

    Google Scholar 

  16. G. T. Knipp, N. F. Ho, C. L. Barsuhn, and R. T. Borchardt. Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J. Pharm. Sci. 86:1105-1110 (1997).

    Google Scholar 

  17. Y. L. He, S. Murby, G. Warhurst, L. Gifford, D. Walker, J. Ayrton, R. Eastmond, and M. Rowland. Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly(ethylene glycol) and D-peptides. J. Pharm. Sci. 87:626-633 (1998).

    Google Scholar 

  18. E. C. A. Paul, J. Hochman, and A. Quaroni. Conditionally immortalized intestinal epithelial cells. novel approach for study of differentiated enterocytes. Am. J. Physiol. 265:C266-C278 (1993).

    Google Scholar 

  19. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476-482 (1990).

    Google Scholar 

  20. P. Artursson, J. Karlsson, G. Ocklind, and N. S#x03A7;pper. Studying transport processes in absorptive epithelia. in Epithelial Cell Culture-A Practical Approach, A.J. Shaw, (ed.), Oxford Press, New York, 1996, pp. 111-133.

    Google Scholar 

  21. J. Taipalensuu, H. TÖrnblom, G. Lindberg, C. Einarsson, F. SjÖqvist, H. Melhus, P. Garberg, B. SjÖstrÖm, B. Lundgren, and P. Artursson. Correlation of gene expression of ten drug efflux proteins of the atp-binding cassette transporter family in normal human jejunum and in human intestinal epithelial caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299:164-170 (2001).

    Google Scholar 

  22. K. Palm, P. Stenberg, K. Luthman, and P. Artursson. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 14:568-571 (1997).

    Google Scholar 

  23. S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. LennernÄs, and A. Karlen. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41:4939-4949 (1998).

    Google Scholar 

  24. C. A. BergstrÖm, U. Norinder, K. Luthman, and P. Artursson. Experimental and computational screening models for prediction of aqueous drug solubility. Pharm. Res. 19:182-188 (2002).

    Google Scholar 

  25. K. Palm, K. Luthman, A. L. Ungell, G. Strandlund, F. Beigi, P. Lundahl, and P. Artursson. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J. Med. Chem. 41:5382-5392 (1998).

    Google Scholar 

  26. J. Karlsson and P. Artursson. A new diffusion chamber system for the determination of drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer. Bio#x03A7;m. Biophys. Acta 1111:204-210 (1992).

    Google Scholar 

  27. J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620-628 (2001).

    Google Scholar 

  28. P. Stenberg, U. Norinder, K. Luthman, and P. Artursson. Experimental and computational screening models for the prediction of intestinal drug absorption. J. Med. Chem. 44:1927-1937 (2001).

    Google Scholar 

  29. F. Curry. Mechanics and Thermodynamics of Transcapillary Exchange, in Handbook of Physiology, E. Renkin and C. Michel (eds.), American Physiological Society, Bethesda, 1984, pp. 309-374.

    Google Scholar 

  30. K. Morita, H. Sasaki, M. Furuse, and S. Tsukita. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147:185-194 (1999).

    Google Scholar 

  31. A. Sharma, P. H. Slugg, J. L. Hammett, and W. J. Jusko. Estimation of oral bioavailability of a long half-life drug in healthy subjects. Pharm. Res. 15:1782-1786 (1998).

    Google Scholar 

  32. M. Furuse, K. Furuse, H. Sasaki, and S. Tsukita. Conversion of zonulae occludentes from tight to leaky strand type by ntroducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. 153:263-272 (2001).

    Google Scholar 

  33. C. Rahner, L. L. Mitic, and J. M. Anderson. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411-422 (2001).

    Google Scholar 

  34. B. M. Fihn, A. SjÖqvist, and M. Jodal. Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 119:1029-1036 (2000).

    Google Scholar 

  35. K. D. Fine, C. A. Santa Ana, J. L. Porter, and J. S. Fordtran. Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108:983-989 (1995).

    Google Scholar 

  36. J. D. SÖderholm, G. Olaison, A. Kald, C. Tagesson, and R. SjÖdahl. Absorption profiles for polyethylene glycols after #x00AEional jejunal perfusion and oral load in healthy humans. Dig. Dis. Sci. 42:853-857 (1997).

    Google Scholar 

  37. S. Yamashita, Y. Tanaka, Y. Endoh, Y. Taki, T. Sakane, T. Nadai, and H. Sezaki. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm. Res. 14:486-491 (1997).

    Google Scholar 

  38. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27-43 (2001).

    Google Scholar 

  39. L. Knutson, B. Odlind, and R. HÄllgren. A new technique for segmental jejunal perfusion in man. Am. J. Gastroenterol. 84:1278-1284 (1989).

    Google Scholar 

  40. D. Nilsson, U. Fagerholm, and H. LennernÄs. The influence of net water absorption on the permeability of antipyrine and levodopa in the human jejunum. Pharm. Res. 11:1540-1547 (1994).

    Google Scholar 

  41. H. LennernÄs. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J. Pharm. Pharmacol. 49:627-638 (1997).

    Google Scholar 

  42. M. Furuse, T. Hirase, M. Itoh, A. Nagafu#x03A7;, S. Yonemura, and S. Tsukita. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777-1788 (1993).

    Google Scholar 

  43. T. Kucharzik, S. V. Walsh, J. Chen, C. A. Parkos, and A. Nusrat. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am. J. Pathol. 159:2001-2009 (2001).

    Google Scholar 

  44. Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Butina, G. Beck, B. Sherborne, I. Cooper, J. A. Platts, and D. Boutina. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90:749-784 (2001).

    Google Scholar 

  45. T. Lindmark, N. S#x03A7;pper, L. Lazorova, A. G. de Boer, and P. Artursson. Absorption enhancement in intestinal epithelial Caco-2 monolayers by sodium caprate: assessment of molecular weight dependence and demonstration of transport routes. J. Drug Target. 5:215-223 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Artursson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavelin, S., Taipalensuu, J., Söderberg, L. et al. Prediction of the Oral Absorption of Low-Permeability Drugs Using Small Intestine-Like 2/4/A1 Cell Monolayers. Pharm Res 20, 397–405 (2003). https://doi.org/10.1023/A:1022699920043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022699920043

Navigation