Skip to main content
Log in

Morphine Blood-Brain Barrier Transport Is Influenced by Probenecid Co-Administration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this study was to investigate the possible influence of probenecid on morphine transport across the blood-brain barrier (BBB) in rats.

Methods. Microdialysis probes, calibrated using retrodialysis by drug, were placed into the striatum and jugular vein of seven Sprague-Dawley rats. Morphine was administered as a 4-h exponential infusion. The experiment was repeated the next day with the addition of probenecid, administered as a bolus dose (20 mg/kg) followed by a constant infusion (20 mg/kg/h). Models for BBB transport were built using the computer program NONMEM.

Results. The steady-state ratio of 0.29 ± 0.07 of unbound morphine concentration in brain to that in blood indicates that morphine is actively effluxed at the BBB. Probenecid co-administration increased the ratio to 0.39 ± 0.04 (p < 0.05). Models in which probenecid influenced the brain efflux clearance rather than the influx clearance, well described the data. The half-life in brain increased from 58 ± 9 min to 115 ± 25 min when probenecid was co-administered. Systemic clearance of morphine also decreased upon probenecid co-administration, and M3G formation was decreased.

Conclusion. This study indicates that morphine is a substrate for the probenecid-sensitive transporters at the BBB. Co-administration of probenecid decreased the brain efflux clearance of morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Hammarlund-Udenaes, L. K. Paalzow, and E. C. de Lange. Drug equilibration across the blood-brain barrier—pharmacokinetic considerations based on the microdialysis method. Pharm. Res. 14:128-134 (1997).

    Google Scholar 

  2. R. Xie, M. Hammarlund-Udenaes, A. G. de Boer, and E. C. de Lange. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (-/-) and mdr1a (+/+) mice. Br. J. Pharmacol. 128:563-568 (1999).

    Google Scholar 

  3. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab. Dispos. 27:827-834 (1999).

    Google Scholar 

  4. R. Xie, M. R. Bouw, and M. Hammarlund-Udenaes. Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br. J. Pharmacol. 131:1784-1792 (2000).

    Google Scholar 

  5. R. A. Morin and W. H. Lyness. Potentiation of morphine analgesia after pretreatment with probenecid or sulfinpyrazone. Pharmacol. Biochem. Behav. 18:885-889 (1983).

    Google Scholar 

  6. Z. Hollo, L. Homolya, T. Hegedus, and B. Sarkadi. Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. FEBS Lett. 383:99-104 (1996).

    Google Scholar 

  7. N. H. Hendrikse, E. J. Franssen, W. T. van der Graaf, C. Meijer, D. A. Piers, W. Vaalburg, and E. G. de Vries. 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br. J. Cancer 77:353-358 (1998).

    Google Scholar 

  8. P. Borst, R. Evers, M. Kool, and J. Wijnholds. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92:1295-1302 (2000).

    Google Scholar 

  9. Y. Zhang, H. Han, W. F. Elmquist, and D. W. Miller. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res. 876:148-153 (2000).

    Google Scholar 

  10. D. Sugiyama, H. Kusuhara, Y. Shitara, T. Abe, P. J. Meier, T. Sekine, H. Endou, H. Suzuki, and Y. Sugiyama. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 298:316-322 (2001).

    Google Scholar 

  11. C. K. Kuo, N. Hanioka, Y. Hoshikawa, K. Oguri, and H. Yoshimura. Species difference of site-selective glucuronidation of morphine. J. Pharmacobiodyn. 14:187-193 (1991).

    Google Scholar 

  12. J. T. Van Crugten, B. C. Sallustio, R. L. Nation, and A. A. Somogyi. Renal tubular transport of morphine, morphine-6-glucuronide, and morphine-3-glucuronide in the isolated perfused rat kidney. Drug Metab. Dispos. 19:1087-1092 (1991).

    Google Scholar 

  13. M. R. Bouw and M. Hammarlund-Udenaes. Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm. Res. 15:1673-1679 (1998).

    Google Scholar 

  14. S. L. Shafer, L. C. Siegel, J. E. Cooke, and J. C. Scott. Testing computer-controlled infusion pumps by simulation. Anesthesiology 68:261-266 (1988).

    Google Scholar 

  15. M. Ekblom, M. Hammarlund-Udenaes, and L. Paalzow. Modeling of tolerance development and rebound effect during different intravenous administrations of morphine to rats. J. Pharmacol. Exp. Ther. 266:244-252 (1993).

    Google Scholar 

  16. S. P. Joel, R. J. Osborne, and M. L. Slevin. An improved method for the simultaneous determination of morphine and its principal glucuronide metabolites. J. Chromatogr. 430:394-399 (1988).

    Google Scholar 

  17. S. L. Beal and L. S. Sheiner. NONMEM User's Guide. NONMEM Project Group, University of California at San Fransisco, San Fransisco, California, 1992.

    Google Scholar 

  18. E. N. Jonsson and M. O. Karlsson. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 58:51-64 (1999).

    Google Scholar 

  19. Y. Wang and D. F. Welty. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 13:398-403 (1996).

    Google Scholar 

  20. G. Skopp, L. Potsch, B. Ganssmann, R. Aderjan, and R. Mattern. A preliminary study on the distribution of morphine and its glucuronides in the subcompartments of blood. J. Anal. Toxicol. 22:261-264 (1998).

    Google Scholar 

  21. U. Bickel, O. P. Schumacher, Y. S. Kang, and K. Voigt. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J. Pharmacol. Exp. Ther. 278:107-113 (1996).

    Google Scholar 

  22. C. J. Matheny, M. W. Lamb, K. R. Brouwer, and G. M. Pollack. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy 21:778-796 (2001).

    Google Scholar 

  23. M. R. Bouw, M. Gardmark, and M. Hammarlund-Udenaes. Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats—a microdialysis study. Pharm. Res. 17:1220-1227 (2000).

    Google Scholar 

  24. I. Szentistvanyi, C. S. Patlak, R. A. Ellis, and H. F. Cserr. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246:F835-F844 (1984).

    Google Scholar 

  25. G. A. Rosenberg, W. T. Kyner, and E. Estrada. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am. J. Physiol. 238:F42-F49 (1980).

    Google Scholar 

  26. R. A. Upton, R. L. Williams, J. N. Buskin, and R. M. Jones. Effects of probenecid on ketoprofen kinetics. Clin. Pharmacol. Ther. 31:705-712 (1982).

    Google Scholar 

  27. P. C. Smith, P. N. Langendijk, J. A. Bosso, and L. Z. Benet. Effect of probenecid on the formation and elimination of acyl glucuronides: studies with zomepirac. Clin. Pharmacol. Ther. 38:121-127 (1985).

    Google Scholar 

  28. J. F. Ghersi-Egea, B. Leninger-Muller, G. Suleman, G. Siest, and A. Minn. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J. Neurochem. 62:1089-1096 (1994).

    Google Scholar 

  29. P. M. Bungay, P. F. Morrison, and R. L. Dedrick. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 46:105-119 (1990).

    Google Scholar 

  30. H. Sun, P. M. Bungay, and W. F. Elmquist. Effect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain. J. Pharmacol. Exp. Ther. 297:991-1000 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Hammarlund-Udenaes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunblad, K., Jonsson, E.N. & Hammarlund-Udenaes, M. Morphine Blood-Brain Barrier Transport Is Influenced by Probenecid Co-Administration. Pharm Res 20, 618–623 (2003). https://doi.org/10.1023/A:1023250900462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023250900462

Navigation