Skip to main content
Log in

Absorption Rate Limit Considerations for Oral Phosphate Prodrugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the potential of phosphate ester prodrugs to significantly improve the absorptive flux of poorly soluble parent drugs.

Methods. Absorptive transport studies of parent drugs and their prodrugs were carried out in Caco-2 cells. Prodrugs of parent drugs with variable aqueous solubilities were tested: Hydrocortisone-phosphate/Hydrocortisone, Fosphenytoin/phenytoin, TAT-59/DP-TAT-59, and Entacapone phosphate/Entacapone. Additional absorption studies were carried out in rats.

Results. Absorptive fluxes of DP-TAT-59 and phenytoin increased 9.8 or 3.3-fold after dosing TAT-59 and 500 μM fosphenytoin, respectively. Hydrocortisone's flux did not increase with hydrocortisone-phosphate at 100 μM. Permeability of the highly lipophilic and protein bound compound, DP-TAT-59, was significantly increased with serosal albumin. No permeability increase was observed for the other drugs with albumin. Entacapone phosphate failed to improve the flux of entacapone compared to an entacapone solution, but the prodrug solution did yield higher entacapone plasma levels in rats when compared with an entacapone suspension.

Conclusion. Ideal phosphate prodrug candidates are characterized by high permeability and low solubility (BCS Class II drugs). For low dose BCS Class II drug candidates, however, no biopharmaceutical advantage may be gained. Phosphate prodrugs of parent drugs with limited permeability may fail. When screening highly lipophilic parent drugs transport studies should be done with albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Fleisher, R. Bong, and B. H. Stewart. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv. Drug Deliv. Rev. 19:115–130 (1996).

    Google Scholar 

  2. A. S. Kearney and V. J. Stella. The in vitro enzymic labilities of chemically distinct phosphomonoester prodrugs. Pharm. Res. 9:497–503 (1992).

    PubMed  Google Scholar 

  3. V. J. Stella. A case for prodrugs: Fosphenytoin. Adv. Drug Deliv. Rev. 19:311–330 (1996).

    Google Scholar 

  4. P. Rohdewald, H. Möllmann, J. Barth, J. Rehder, and H. Derendorf. Pharmacokinetics of dexamethasone and its phosphate ester. Biopharm. Drug Dispos. 8:205–212 (1987).

    PubMed  Google Scholar 

  5. K. R. Hande. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34:1514–1521 (1998).

    PubMed  Google Scholar 

  6. A. S. Kearney and V. J. Stella. Hydrolysis of pharmaceutically relevant phosphate monoester monoanions: correlation to an established structure-reactivity relationship. J. Pharm. Sci. 82:69–72 (1993).

    PubMed  Google Scholar 

  7. P. O. Gunnarsson, S. B. Andersson, S. A. Johansson, T. Nilsson, and G. Plym-Forshell. Pharmacokinetics of estramustine phosphate (Estracyt) in prostatic cancer patients. Eur. J. Clin. Pharmacol. 26:113–119 (1984).

    PubMed  Google Scholar 

  8. P. van Asten, S. A. Duursma, J. H. Glerum, F. F. Ververs, H. J. van Rijn, and A. van Dijk. Absolute bioavailability of fluoride from disodium monofluorophosphate and enteric-coated sodium fluoride tablets. Eur. J. Clin. Pharmacol. 50:321–326 (1996).

    PubMed  Google Scholar 

  9. M. A. Boogaerts, A. Van Hoof, D. Catovsky, M. Kovacs, M. Montillo, P. L. Zinzani, J. L. Binet, W. Feremans, R. Marcus, F. Bosch, G. Verhoef, and M. Klein. Activity of oral fludarabine phosphate in previously treated chronic lymphocytic leukemia. J. Clin. Oncol. 19:4252–4258 (2001).

    PubMed  Google Scholar 

  10. L. A. Sorbera, L. Martin, J. Castaner, and R. M. Castaner. Fosamprenavir. Drugs of the Future 26:224–231 (2001).

    Google Scholar 

  11. R. S. de Jong, N. H. Mulder, D. R. Uges, S. Kaul, B. Winograd, D. Sleijfer, H. J. Groen, P. H. Willemse, W. T. van der Graaf, and E. G. de Vries. Randomized comparison of etoposide pharmacokinetics after oral etoposide phosphate and oral etoposide. Br. J. Cancer 75:1660–1666 (1997).

    PubMed  Google Scholar 

  12. S. Hawser and R. F. Hoechst Marion Roussel. LY-303366 (Eli Lilly & Co). Curr. Opin. Anti-Infect. Invest. Drugs 1:353–360 (1999).

    Google Scholar 

  13. Y. Ueda, A. B. Mikkilineni, J. O. Knipe, W. C. Rose, A. M. Casazza, and D. M. Vyas. Novel water soluble phosphate prodrugs of taxol possessing in vivo antitumor activity. Bioorg. Med. Chem. Lett. 3:1761–1766 (1993).

    Google Scholar 

  14. G. L. Amidon, H. Lennernaes, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    PubMed  Google Scholar 

  15. T. Heimbach. Oral Phosphate Prodrugs: Absorption Rate Limit Considerations. Ph.D. Thesis: University of Michigan (2003).

  16. B. J. Aungst, N. H. Nguyen, J. P. Bulgarelli, and K. Oates-Lenz. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm. Res. 17:1175–1180 (2000).

    PubMed  Google Scholar 

  17. M. Pinto, S. Robine Leon, and M. D. Appay. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47:323–330 (1983).

    Google Scholar 

  18. D. Fleisher, N. Sheth, H. Griffin, M. McFadden, and G. Aspacher. Nutrient influences on rat intestinal phenytoin uptake. Pharm. Res. 6:332–337 (1989).

    PubMed  Google Scholar 

  19. L. Y. Li, G. L. Amidon, J. S. Kim, T. Heimbach, F. Kesisoglou, J. T. Topliss, and D. Fleisher. Intestinal metabolism promotes regional differences in apical uptake of indinavir: Coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat. J. Pharmacol. Exp. Ther. 301:586–593 (2002).

    PubMed  Google Scholar 

  20. J. Savolainen, M. Forsberg, H. Taipale, P. T. Mannisto, K. Jarvinen, J. Gynther, P. Jarho, and T. Jarvinen. Effects of aqueous solubility and dissolution characteristics on oral bioavailability of entacapone. Drug Dev. Res. 49:238–244 (2000).

    Google Scholar 

  21. K. Palm, K. Luthman, J. Ros, J. Grasjo, and P. Artursson. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291:435–443 (1999).

    PubMed  Google Scholar 

  22. D. Fleisher, K. C. Johnson, B. H. Stewart, and G. L. Amidon. Oral absorption of 21-corticosteroid esters: a function of aqueous stability and intestinal enzyme activity and distribution. J. Pharm. Sci. 75:934–939 (1986).

    PubMed  Google Scholar 

  23. K. Ikeda, M. Nagamachi, H. Masuda, S. Nagayama, and Y. Kawaguchi. Metabolic fate of TAT-59. (3rd report). Absorption and metabolism of TAT-59. Yakuri to Chiryo 26:797–807 (1998).

    Google Scholar 

  24. P. Wils, A. Warnery, V. Phung-Ba, S. Legrain, and D. Scherman. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharmacol. Exp. Ther. 269:654–658 (1994).

    PubMed  Google Scholar 

  25. G. L. Amidon, B. H. Stewart, and S. Pogany. Improving the intestinal mucosal cell uptake of water insoluble compounds. J. Control. Release 2:13–26 (1985).

    Google Scholar 

  26. G. L. Amidon, G. D. Leesman, and R. L. Elliott. Improving intestinal absorption of water-insoluble compounds: a membrane metabolism strategy. J. Pharm. Sci. 69:1363–1368 (1980).

    PubMed  Google Scholar 

  27. D. A. Johnson and G. L. Amidon. Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J. Theor. Biol. 131:93–106 (1988).

    PubMed  Google Scholar 

  28. R. B. McComb, G. N. J. Bowers, and S. Posen. Alkaline Phosphatase, Plenum Press, New York and London, 1979.

    Google Scholar 

  29. J. Leppänen, J. Huuskonen, J. Savolainen, T. Nevalainen, H. Taipale, J. Vepsalainen, J. Gynther, and T. Jarvinen. Synthesis of a water-soluble prodrug of entacapone. Bioorg. Med. Chem. Lett. 10:1967–1969 (2000).

    PubMed  Google Scholar 

  30. A. Olivsei. Oral Prednisolone-21-phosphate is absorbed at the same rate and to the same extent as oral prednisolone in normal adults. Therapie 40:1–4 (1985).

    PubMed  Google Scholar 

  31. W. K. Sietsema. The absolute oral bioavailability of selected drugs. Int. J. Clin. Pharmacol. Ther. Toxicol. 27:179–211 (1989).

    PubMed  Google Scholar 

  32. A. H. Burstein, D. Cox, B. Mistry, and N. Eddington. Phenytoin pharmacokinetics following oral administration of phenytoin suspension and fosphenytoin solution to rats. Epilepsy Res. 34:129–133 (1999).

    PubMed  Google Scholar 

  33. Y. Nomura, O. Abe, K. Enomoto, K. Fujiwara, T. Tominaga, K. Hayashi, J. Uchino, M. Takahashi, A. Hayasaka, K. Asaishi, M. Okazaki, R. Abe, I. Kimishima, T. Kajiwara, S. Haga, T. Shimizu, I. Miyazaki, M. Noguchi, M. Yoshida, S. Miura, T. Taguchi, J. Oota, K. Sakai, H. Kinoshita, and H. Tashiro. Phase I study of TAT-59 (a new antiestrogen) in breast cancer. Gan To Kagaku Ryoho 25:553–561 (1998).

    PubMed  Google Scholar 

  34. Y. Matsunaga, R. Ohta, N. Bando, H. Yamada, H. Yuasa, and Y. Kanaya. Effects of water content on physical and chemical stability of tablets containing an anticancer drug TAT-59. Chem. Pharm. Bull. (Tokyo) 41:720–724 (1993).

    Google Scholar 

  35. B. S. Chong and T. L. Mersfelder. Entacapone. Ann. Pharmacother. 34:1056–1065 (2000).

    PubMed  Google Scholar 

  36. J. Savolainen, J. Leppänen, M. Forsberg, H. Taipale, T. Nevalainen, J. Huuskonen, J. Gynther, P. T. Mannisto, and T. Jarvinen. Synthesis and in vitro/in vivo evaluation of novel oral N-alkyl-and N,N-dialkyl-carbamate esters of entacapone. Life Sci. 67:205–216 (2000).

    PubMed  Google Scholar 

  37. C. Li, D. Fleisher, L. Li, J. R. Schwier, S. A. Sweetana, V. Vasudevan, L. L. Zornes, L. H. Pao, S. Y. Zhou, and R. E. Stratford. Regional-dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J. Pharm. Sci. 90:47–57 (2001).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fleisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimbach, T., Oh, DM., Li, L.Y. et al. Absorption Rate Limit Considerations for Oral Phosphate Prodrugs. Pharm Res 20, 848–856 (2003). https://doi.org/10.1023/A:1023827017224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023827017224

Navigation