Skip to main content
Log in

Efflux Ratio Cannot Assess P-Glycoprotein-Mediated Attenuation of Absorptive Transport: Asymmetric Effect of P-Glycoprotein on Absorptive and Secretory Transport Across Caco-2 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work was to determine whether P-glycoprotein (P-gp) modulates absorptive and secretory transport equally across polarized epithelium (i.e., Caco-2 cell monolayers) for structurally diverse P-gp substrates, a requirement for the use of the efflux ratio to quantify P-gp-mediated attenuation of absorption across intestinal epithelium.

Methods. Studies were performed in Caco-2 cell monolayers. Apparent permeability (P app) in absorptive (P app,AB) and secretory (P app,BA) directions as well as efflux ratios (P app,BA / P app,AB) were determined for substrates as a function of concentration. Transport of these compounds (10 μM) was measured under normal conditions and in the presence of the P-gp inhibitor, GW918 (1 μM), to dissect the effect of P-gp on absorptive and secretory transport. Apparent biochemical constants of P-gp-mediated efflux activity were calculated for both transport directions.

Results. Efflux ratios for rhodamine 123 and digoxin were comparable (approx. 10). However, transport studies in the presence of GW918 revealed that P-gp attenuated absorptive transport of digoxin by approx. 8-fold but had no effect on absorptive transport of rhodamine 123 (presumably because absorptive transport of rhodamine 123 occurs via paracellular route). The apparent K m for P-gp-mediated efflux of digoxin was >6-fold larger in absorptive vs. secretory direction. For structurally diverse P-gp substrates (acebutolol, colchicine, digoxin, etoposide, methylprednisolone, prednisolone, quinidine, and talinolol) apparent K m was approximately 3 to 8-fold greater in absorptive vs. secretory transport direction, whereas apparent J max was somewhat similar in both transport directions.

Conclusions. P-gp-mediated efflux activity observed during absorptive and secretory transport was asymmetric for all substrates tested. For substrates that crossed polarized epithelium via transcellular pathway in both directions, this difference appears to be caused by greater apparent K m of P-gp-mediated efflux activity in absorptive vs. secretory direction. These results clearly suggest that use of efflux ratios could be misleading in predicting the extent to which P-gp attenuates the absorptive transport of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735-7738 (1987).

    Google Scholar 

  2. K. Arimori and M. Nakano. Drug exsorption from blood into the gastrointestinal tract. Pharm. Res. 15:371-376 (1998).

    Google Scholar 

  3. T. Gramatte, R. Oertel, B. Terhaag, and W. Kirch. Direct demonstration of small intestinal secretion and site-dependent absorption of the #x0392-blocker talinolol in humans. Clin. Pharmacol. Ther. 59:541-549 (1996).

    Google Scholar 

  4. M. F. Hebert. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv. Drug Deliv. Rev. 27:201-214 (1997).

    Google Scholar 

  5. W. M. Kan, Y. T. Liu, C. L. Hsiao, C. Y. Shieh, J. H. Kuo, J. D. Huang, and S. F. Su. Effect of hydroxyzine on the transport of etoposide in rat small intestine. Anticancer Drugs 12:267-273 (2001).

    Google Scholar 

  6. U. Mayer, E. Wagenaar, J. H. Beijnen, J. W. Smit, D. K. Meijer, J. van Asperen, P. Borst, and A. H. Schinkel. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br. J. Pharmacol. 119:1038-1044 (1996).

    Google Scholar 

  7. M. Sababi, O. Borga, and U. Hultkvist-Bengtsson. The role of P-glycoprotein in limiting intestinal #x00AEional absorption of digoxin in rats. Eur. J. Pharm. Sci. 14:21-27 (2001).

    Google Scholar 

  8. H. Saitoh and B. J. Aungst. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm. Res. 12:1304-1310 (1995).

    Google Scholar 

  9. H. Saitoh, M. Hatakeyama, O. Eguchi, M. Oda, and M. Takada. Involvement of intestinal P-glycoprotein in the restricted absorption of methylprednisolone from rat small intestine. J. Pharm. Sci. 87:73-75 (1998).

    Google Scholar 

  10. H. Spahn-Langguth, G. Baktir, A. Radschuweit, A. Okyar, B. Terhaag, P. Ader, A. Hanafy, and P. Langguth. P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int. J. Clin. Pharmacol. Ther. 36:16-24 (1998).

    Google Scholar 

  11. A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031-2035 (1997).

    Google Scholar 

  12. J. van Asperen, A. H. Schinkel, J. H. Beijnen, W. J. Nooijen, P. Borst, and O. van Tellingen. Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient Mice. J. Natl. Cancer Inst. 88:994-999 (1996).

    Google Scholar 

  13. U. Wetterich, H. Spahn-Langguth, E. Mutschler, B. Terhaag, W. Rosch, and P. Langguth. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration-and dose-dependent absorption in vitro and in vivo. Pharm. Res. 13:514-522 (1996).

    Google Scholar 

  14. J. van Asperen, O. van Tellingen, and J. H. Beijnen. The role of mdr1a P-glycoprotein in the biliary and intestinal secretion of doxorubicin and vinblastine in mice. Drug Metab. Dispos. 28:264-267 (2000).

    Google Scholar 

  15. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, A.J.M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491-502 (1994).

    Google Scholar 

  16. J. M. Croop, M. Raymond, D. Haber, A. Devault, R. J. Arceci, P. Gros, and D. E. Housman. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol. 9:1346-1350 (1989).

    Google Scholar 

  17. A. Johne, J. Brockmoller, S. Bauer, A. Maurer, M. Langheinrich, and I. Roots. Pharmacokinetic interaction of digoxin with an herbal extract from St John's wort (Hypericum perforatum). Clin. Pharmacol. Ther. 66:338-345 (1999).

    Google Scholar 

  18. B. Greiner, M. Eichelbaum, P. Fritz, H. P. Kreichgauer, O. von Richter, J. Zundler, and H. K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147-153 (1999).

    Google Scholar 

  19. C. J. Matheny, M. W. Lamb, K. R. Brouwer, and G. M. Pollack. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy 21:778-796 (2001).

    Google Scholar 

  20. K. E. Pedersen. Digoxin interactions. The influence of quinidine and verapamil on the pharmacokinetics and receptor binding of digitalis glycosides. Acta Med. Scand. Suppl. 697:1-40 (1985).

    Google Scholar 

  21. D. K. Yu. The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions. J. Clin. Pharmacol. 39:1203-1211 (1999).

    Google Scholar 

  22. J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620-628 (2001).

    Google Scholar 

  23. Y. Adachi, H. Suzuki, and Y. Sugiyama. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm. Res. 18:1660-1668 (2001).

    Google Scholar 

  24. M. Yamazaki, W. E. Neway, T. Ohe, I. Chen, J. F. Rowe, J. H. Hochman, M. Chiba, and J. H. Lin. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296:723-735 (2001).

    Google Scholar 

  25. L. Z. Benet, S. Oie, and J. B. Schwartz. Design and optimization of dosage #x00AEimens; pharmacokinetic data. In J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddonand, G.G. A. (eds), Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 1990, pp. 1707-1792.

    Google Scholar 

  26. R. B. Kim, C. Wandel, B. Leake, M. Cvetkovic, M. F. Fromm, P. J. Dempsey, M. M. Roden, F. Belas, A. K. Chaudhary, D. M. Roden, A. J. Wood, and G. R. Wilkinson. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm. Res. 16:408-414 (1999).

    Google Scholar 

  27. A. H. Schinkel. Pharmacological insights from P-glycoprotein knockout mice. Int. J. Clin. Pharmacol. Ther. 36:9-13 (1998).

    Google Scholar 

  28. T. Terao, E. Hisanaga, Y. Sai, I. Tamai, and A. Tsuji. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol. 48:1083-1089 (1996).

    Google Scholar 

  29. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxy-vitamin D3. Mol. Pharmacol. 51:741-754 (1997).

    Google Scholar 

  30. K. Lee and D. R. Thakker. Saturable transport of H2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J. Pharm. Sci. 88:680-687 (1999).

    Google Scholar 

  31. F. Hyafil, C. Vergely, P. Du Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595-4602 (1993).

    Google Scholar 

  32. J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171-176 (2001).

    Google Scholar 

  33. N. F. Ho, P. S. Burton, R. A. Conradi, and C. L. Barsuhn. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell. J. Pharm. Sci. 84:21-27 (1995).

    Google Scholar 

  34. M. D. Troutman and D. R. Thakker. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res. 20:1200-1209 (2003).

    Google Scholar 

  35. K. A. Lentz, J. W. Polli, S. A. Wring, J. E. Humphreys, and J. E. Polli. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm. Res. 17:1456-1460 (2000).

    Google Scholar 

  36. F. R. Luo, P. V. Paranjpe, A. Guo, E. Rubin, and P. Sinko. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab. Dispos. 30:763-770 (2002).

    Google Scholar 

  37. F. Tang and R. T. Borchardt. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of the coumarinic acid-based cyclic prodrug of the opioid peptide DADLE. Pharm. Res. 19:787-793 (2002).

    Google Scholar 

  38. M. Maliepaard, M. A. van Gastelen, A. Tohgo, F. H. Hausheer, R. C. van Waardenburg, L. A. de Jong, D. Pluim, J. H. Beijnen, and J. H. Schellens. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res. 7:935-941 (2001).

    Google Scholar 

  39. J. Taipalensuu, H. Tornblom, G. Lindberg, C. Einarsson, F. Sjoqvist, H. Melhus, P. Garberg, B. Sjostrom, B. Lundgren, and P. Artursson. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299:164-170 (2001).

    Google Scholar 

  40. K. Simons and G. van Meer. Lipid sorting in epithelial cells. Biochemistry 27:6197-6202 (1988).

    Google Scholar 

  41. W. van 't Hof and G. van Meer. Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J. Cell Biol. 111:977-986 (1990).

    Google Scholar 

  42. G. C. Hansson, K. Simons, and G. van Meer. Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J. 5:483-489 (1986).

    Google Scholar 

  43. A. Abe, J. Inokuchi, M. Jimbo, H. Shimeno, A. Nagamatsu, J. A. Shayman, G. S. Shukla, and N. S. Radin. Improved inhibitors of glucosylceramide synthase. J. Biochem. (Tokyo) 111:191-196 (1992).

    Google Scholar 

  44. C. Le Grimellec, G. Friedlander, and M. C. Giocondi. Asymmetry of plasma membrane lipid order in Madin-Darby Canine Kidney cells. Am. J. Physiol. 255:F22-F32 (1988).

    Google Scholar 

  45. S. Ito, C. Woodland, B. Sarkadi, G. Hockmann, S. E. Walker, and G. Koren. Modeling of P-glycoprotein-involved epithelial drug transport in MDCK cells. Am. J. Physiol. 277:F84-F96 (1999).

    Google Scholar 

  46. G. A. Altenberg, C. G. Vanoye, J. K. Horton, and L. Reuss. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane. Proc. Natl. Acad. Sci. USA 91:4654-4657 (1994).

    Google Scholar 

  47. Y. Chen, A. C. Pant, and S. M. Simon. P-glycoprotein does not reduce substrate concentration from the extracellular leaflet of the plasma membrane in living cells. Cancer Res. 61:7763-7769 (2001).

    Google Scholar 

  48. L. Homolya, Z. Hollo, U. A. Germann, I. Pastan, M. M. Gottesman, and B. Sarkadi. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268:21493-21496 (1993).

    Google Scholar 

  49. M. D. Troutman and D. R. Thakker. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm. Res. 20:1210-1224 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiren R. Thakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troutman, M.D., Thakker, D.R. Efflux Ratio Cannot Assess P-Glycoprotein-Mediated Attenuation of Absorptive Transport: Asymmetric Effect of P-Glycoprotein on Absorptive and Secretory Transport Across Caco-2 Cell Monolayers. Pharm Res 20, 1200–1209 (2003). https://doi.org/10.1023/A:1025049014674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025049014674

Navigation