Skip to main content
Log in

Mixed Effect Modeling of Sumatriptan Pharmacokinetics During Drug Development. I: Interspecies Allometric Scaling

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Allometric scaling is an empirical examination of the relationships between the pharmacokinetic parameters and size (usually body weight), but it can also involve brain weight for metabolized drug. Through all species, the protein binding of sumatriptan is similar (14-16%). and its metabolic pathway undergoes extensive oxidative deamination involving the monoamine oxidase A isoenzyme. These similarities across species suggested the possible relevance of an allometric analysis. Toxicokinetic data were collected from rats, pregnant rabbits, and dogs in animal pharmacokinetic studies where sumatriptan was administered intravenously to the animals at doses of 5 mg/kg. 0.25 mg/kg, and 1 mg, kg, respectively. Animal data were pooled and analyzed in one step using a mixed effect modeling (population) approach. The kinetic parameters predicted in any species were close to the observed values by species: 77 L/hr vs. 80 L/hr in man for total clearance, 137 L vs. 119 L for distribution volume at steady state. The value of the mixed effect modeling approach compared to the two-step method was demonstrated especially with the possibility of including covariates to describe the status of animal (e.g., pregnancy) in the model. Knowledge of the animal kinetics, dynamics, and metabolism of a drug contributes to optimal and expeditious development. Valuable information for the design of the first-dose-in-man study may emerge from more creative data analysis based on all the information collected during the preclinical and ongoing nonclinical evaluation of a new drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Mordenti. Forecasting cephalosporin and monobactam antibiotic half-lives in humans from data collected in laboratory animals. Antimicrob. Agents Chemother. 27:887–891 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. J. Mordenti. Pharmacokinetic scale-up: Accurate prediction of human pharmacokinetic profiles from animal data. J. Pharm. Sci. 74:1097–1099 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. J. Mordenti, S. A. Chen, J. A. Moore, B. L. Ferraiolo, and J. D. Green. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm. Res. 8:1351–1359 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. C. Efthymiopoulos, R. Battaglia, and M. Strolin Benedetti. Animal pharmacokinetics and interspecies scaling of FCE 22101, a penem antibiotic. J. Antimicrob. Agents Chemother. 27:517–526 (1991).

    Article  CAS  Google Scholar 

  5. A. R. Gascon, B. Calvo, R.M. Hernandez, A. Dominguez-Gil, and J. L. Pedraz. Interspecies scaling of cimetidine-theophylline pharmacokinetic interaction: Interspecies scaling in pharmacokinetic interactions. Pharm. Res. 11:945–950 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. R. L. Dedrick, K. B. Bischoff, and D. S. Zahardo. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother. Rep. 54:95–101 (1970).

    CAS  PubMed  Google Scholar 

  7. H. Boxenbaum and R. Ronfeld. Interspecies pharmacokinetic scaling and the Dedrick plots. Am. J. Physiol. 245:R768–R775 (1983).

    CAS  PubMed  Google Scholar 

  8. R. M. J. Ings. Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 20:1201–1231 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. J. Mordenti and W. Chappell. The use of interspecies scaling in toxicokinetics. In A. Yacobi, J. P. Skelly, and V. K. Batra (eds.), Toxicokinetics and New Drug Development, Pergamon, New York, 1989, pp. 42–96.

    Google Scholar 

  10. F. A. A. Dallas, C. M. Dixon, R. J. McCulloch, and D. A. Saynor. Kinetics of 14CGR43175 in rat and dog. Cephalalgia Suppl. 9:53–56 (1989).

    Article  Google Scholar 

  11. P. D. Andrew, H. L. Birch, and D. A. Phillpot. Determination of sumatriptan succinate in plasma and urine by high-performance liquid chromatography with electrochemical detection. J. Pharm. Sci. 82:73–76 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. S. L. Beal and L. B. Sheiner (eds.). NONMEM Users Guides, NONMEM Project Group, University of California, San Francisco, 1992.

    Google Scholar 

  13. C. M. Dixon, D. A. Saynor, P. D. Andrew, J. Oxford, A. Bradbury, and M. H. Tarbit. Disposition of sumatriptan in laboratory animals and humans. Drug Metab. Dispos. 21:761–769 (1993).

    CAS  PubMed  Google Scholar 

  14. L. F. Lacey, E. K. Hussey, and P. A. Fowler. Single dose pharmacokinetics of sumatriptan in healthy volunteers. Eur. J. Clin. Pharmacol. 47:543–548 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  16. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic ciearance: Extrapolation of data to benzodiazepines and phenytoin. J. Pharmacokin. Biopharm. 8:165–176 (1980).

    Article  CAS  Google Scholar 

  17. H. Boxenbaum and R. W. D'Souza. Interspecies pharmacokinetic scaling, biological design and neoteny. Adv. Drug Res. 19:139–196 (1990).

    Article  CAS  Google Scholar 

  18. H. Boxenbaum. Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab. Rev. 15:1071–1121 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. A. Puigdemont, J. Ramis, R. Guitart, and M. Arboix. Species scaling of propafenone disposition and concentration time relationships among eight mammalian species. J. Pharm. Sci. 82:1126–1129 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. P. P. A. Humphrey, W. Feniuk, A. S. Marriott, R. J. N. Tanner, M. R. Jackson, and M. L. Tucker. Preclinical studies on the anti-migraine drug, sumatriptan. Eur. Neurol. 31:282–290 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. C. A. Cruze, G. R. Kelm, and M. P. Meredith. Interspecies scaling of tebufelone pharmacokinetic data and application to preclinical toxicology. Pharm. Res. 12:895–901 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. T. Lave, A. H. Schmitt-Hoffmann, P. Coassolo, B. Valles, G. Ubeaud, B. Ba, R. Brandt, and R. C. Chou. A new extrapolation method from animals to man: Application to a metabolized compound, mofarotene. Life Sci. 56:473–478 (1995).

    Article  Google Scholar 

  23. J. Mordenti. Man versus beast: Pharmacokinetic scaling in mammals. J. Pharm. Sci. 75:1028–1040 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. M. Leal, A. Yacobi, and V. K. Batra. Use of toxicokinetic principles in drug development: bridging preclinical and clinical studies. In A. Yacobi, J. P. Skelly, V. P. Shah, and L. Z. Benet (eds.), Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development, Plenum Press, New York, 1993, pp. 7–13.

    Google Scholar 

  25. C. Efthymiopoulos, V. Cosson, and A. Bye. The use of NONMEM in the interspecies allometric scaling (Abstract). Second meeting of Page, London, June 1994.

  26. T. Lave, B. Levet-Trafit, A. H. Schmitt-Hoffmann, B. Morgenroth, W. Richter, and R. C. Chou. Interspecies scaling of interferon disposition and comparison of allometric scaling with concentration time transformations. J. Pharm. Sci. 84:1285–1290 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. G. Levy. The case for preclinical pharmacodynamics. In A. Yacobi, J. P. Skelly, V. P. Shah, and L. Z. Benet (eds.), Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development, Plenum Press, New York, 1993, pp. 7–13.

    Chapter  Google Scholar 

  28. D. Young, D. Piscitelli, B. Patel, and L. Fleisher. First dose in man (Abstract). Clin. Trials Metanaly. 29:247–308 (1994).

    Google Scholar 

  29. W. Weber, L. Harnisch, M. Zimmer, P. Crause, and B. Katgely. Optimization of a “First Dose in Man” Study using a NONMEM Model for Mammals (Abstract). Third meeting of Page, Frankfurt am Main, Germany, June 1995.

  30. H. Boxenbaum and C. DiLea. First-time-in-human dose selection: Allometric thoughts and perspectives. J. Clin. Pharmacol. 35:957–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. H. E. Connor, W. Feniuk, and P. P. A. Humphrey. Characterization of 5-HT receptors mediating contraction of canine and primate basilar artery by use of GR43175, a selective 5-HT1-like receptor agonist. Br. J. Pharmacol. 96:379–387 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. G. Levy. The case for preclinical pharmacodynamics: Why and how? (Abstract). Therapie 49:289 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosson, V.F., Fuseau, E., Efthymiopoulos, C. et al. Mixed Effect Modeling of Sumatriptan Pharmacokinetics During Drug Development. I: Interspecies Allometric Scaling. J Pharmacokinet Pharmacodyn 25, 149–167 (1997). https://doi.org/10.1023/A:1025728028890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025728028890

Navigation