Skip to main content
Log in

Ocular Pharmacokinetic Modeling Using Corneal Absorption and Desorption Rates from in Vitro Permeation Experiments with Cultured Corneal Epithelial Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine corneal absorption and desorption rate constants in a corneal epithelial cell culture model and to apply them to predict ocular pharmacokinetics after topical ocular drug application.

Method. In vitro permeation experiments were performed with a mixture of six β-blockers using an immortalized human corneal epithelial cell culture model. Disappearance of the compounds from the apical donor solution and their appearance in the basolateral receiver solution were determined and used to calculate the corneal absorption and desorption rate constants. An ocular pharmacokinetic simulation model was constructed for timolol with the Stella® program using the absorption and desorption rate constants and previously published in vivo pharmacokinetic parameters.

Results. The corneal absorption rates of β-blockers increased significantly with the lipophilicity of the compounds. The pharmacokinetic simulation model gave a realistic mean residence time for timolol in the cornea (57 min) and the aqueous humor (90 min). The simulated timolol concentration in the aqueous humor was about 1.8 times higher than the previously published experimental values.

Conclusions. The simulation model gave a reasonable estimate of the aqueous humor concentration profile of timolol. This was the first attempt to combine cell culture methods and pharmacokinetic modeling for prediction of ocular pharmacokinetics. The wider applicability of this approach remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Ahmed and T. F. Patton. Disposition of timolol and inulin in the rabbit eye following corneal versus non–corneal absorption. Int. J. Pharm. 38:9–21 (1987).

    Google Scholar 

  2. D. S. Chien, J. J. Homsy, C. Gluchowski, and D. D. Tang–Liu. Corneal and conjunctival/scleral penetration of p–aminoclonidine, AGN 190342, and clonidine in rabbit eyes. Curr. Eye Res. 9:1051–1059 (1990).

    Google Scholar 

  3. H.–S. Huang, R. D. Schoenwald, and J. L. Lach. Corneal penetration behavior of β–blocking agents II: Assessment of barrier contributions. J. Pharm. Sci. 72:1272–1279 (1983).

    Google Scholar 

  4. M. R. Prausnitz and J. S. Noonan. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J. Pharm. Sci. 87:1479–1488 (1998).

    Google Scholar 

  5. R. D. Schoenwald. Ocular drug delivery. Pharmacokinetic considerations. Clin. Pharmacokinet. 18:255–269 (1990).

    Google Scholar 

  6. D. S. Chien, H. Sasaki, H. Bundgaard, A. Buur, and V. H. L. Lee. Role of enzymatic lability in the corneal and conjunctival penetration of timolol ester prodrugs in the pigmented rabbit. Pharm. Res. 8:728–733 (1991).

    Google Scholar 

  7. P. Suhonen, T. Järvinen, P. Rytkönen, P. Peura, and A. Urtti. Improved corneal pilocarpine permeability with O,O′–(1,4–xylylene) bispilocarpic acid ester double prodrugs. Pharm. Res. 8:1539–1542 (1991).

    Google Scholar 

  8. J. W. Sieg and J. R. Robinson. Mechanistic studies on transcorneal permeation of pilocarpine. J. Pharm. Sci. 65:1816–1822 (1976).

    Google Scholar 

  9. V. H. L. Lee, A. M. Luo, S. Li, S. K. Podder, J. S.–C. Chang, S. Ohdo, and G. M. Grass. Pharmacokinetic basis for nonadditivity of intraocular pressure lowering in timolol combinations. Invest. Ophthalmol. Vis. Sci. 32:2948–2957 (1991).

    Google Scholar 

  10. S. C. Miller, K. J. Himmelstein, and T. F. Patton. A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits. J. Pharmacokinet. Biopharm. 9:653–677 (1981).

    Google Scholar 

  11. K. Yamamura, H. Sasaki, M. Nakashima, M. Ichikawa, T. Mukai, K. Nishida, and J. Nakamura. Characterization of ocular pharmacokinetics of beta–blockers using a diffusion model after instillation. Pharm. Res. 16:1596–1601 (1999).

    Google Scholar 

  12. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm. Res. 7:435–451 (1990).

    Google Scholar 

  13. J.–E. Chang, S. K. Basu, and V. H. L. Lee. Air–interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies. Pharm. Res. 17:670–676 (2000).

    Google Scholar 

  14. C. R. Kahn, E. Young, I. H. Lee, and J. S. Rhim. Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest. Ophthalmol. Vis. Sci. 34:3429–3441 (1993).

    Google Scholar 

  15. E. Toropainen, V.–P. Ranta, A. Talvitie, P. Suhonen, and A. Urtti. Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest. Ophthalmol. Vis. Sci. 42:2942–2948 (2001).

    Google Scholar 

  16. K. Araki–Sasaki, Y. Ohashi, T. Sasabe, K. Hayashi, H. Watanabe, Y. Tano, and H. Handa. An SV40–immortalized human corneal epithelial cell line and its characterization. Invest. Ophthalmol. Vis. Sci. 36:614–621 (1995).

    Google Scholar 

  17. V.–P. Ranta, E. Toropainen, A. Talvitie, S. Auriola, and A. Urtti. Simultaneous determination of eight β–blockers by gradient high–performance liquid chromatography with combined ultraviolet and fluorescence detection in corneal permeability studies in vitro. J. Chromatogr. B 77:81–87 (2002).

    Google Scholar 

  18. M. A. Watsky, M. M. Jablonski, and H. F. Edelhauser. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr. Eye Res. 7:483–486 (1988).

    Google Scholar 

  19. S. S. Chrai, T. F. Patton, A. Mehta, and J. R. Robinson. Lacrimal and instilled fluid dynamics in rabbit eyes. J. Pharm. Sci. 62:1112–1121 (1973).

    Google Scholar 

  20. R. D. Schoenwald and H.–S. Huang. Corneal penetration behavior of β–blocking agents I: Physicochemical factors. J. Pharm. Sci. 72:1266–1272 (1983).

    Google Scholar 

  21. W. Wang, H. Sasaki, D.–S. Chien, and V. H. L. Lee. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr. Eye Res. 6:571–579 (1991).

    Google Scholar 

  22. I. Ahmed, R. D. Gokhale, M. V. Shah, and T. F. Patton. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J. Pharm. Sci. 76:583–586 (1987).

    Google Scholar 

  23. K. Järvinen, E. Vartiainen, and A. Urtti. Optimizing the systemic and ocular absorption of timolol from eye–drops. STP Pharm. Sci. 2:105–110 (1992).

    Google Scholar 

  24. M. L. Francoeur, S. J. Sitek, B. Costello, and T. F. Patton. Kinetic disposition and distribution of timolol in the rabbit eye. A physiologically based ocular model. Int. J. Pharm. 25:275–292 (1985).

    Google Scholar 

  25. S. Burgalassi, P. Chetoni, L. Panichi, E. Boldrini, and M. F. Saettone. Xyloglucan as a novel vehicle for timolol: Pharmacokinetics and pressure lowering activity in rabbits. J. Ocul. Pharmacol. Ther. 16:497–509 (2000).

    Google Scholar 

  26. T. F. Patton and J. R. Robinson. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J. Pharm. Sci. 64:1312–1316 (1975).

    Google Scholar 

  27. S.–C. Chang, D.–S. Chien, H. Bundgaard, and V. H. L. Lee. Relative effectiveness of prodrug and viscous solution approaches in maximizing the ratio of ocular to systemic absorption of topically applied timolol. Exp. Eye Res. 46:59–69 (1988).

    Google Scholar 

  28. S.–C. Chang and V. H. L. Lee. Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: Implications in the design of strategies to maximize the ratio of ocular to systemic absorption. J. Ocul. Pharmacol. 3:159–169 (1987).

    Google Scholar 

  29. A. Urtti, J. D. Pipkin, G. Rork, T. Sendo, U. Finne, and A. J. Repta. Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int. J. Pharm. 61:241–249 (1990).

    Google Scholar 

  30. R. Jani, O. Gan, Y. Ali, R. Rodstrom, and S. Hancock. Ion exchange resins for ophthalmic delivery. J. Ocul. Pharmacol. 10:57–67 (1994).

    Google Scholar 

  31. G. M. Grass and V. H. L. Lee. A model to predict aqueous humor and plasma pharmacokinetics of ocularly applied drugs. Invest. Ophthalmol. Vis. Sci. 34:2251–2259 (1993).

    Google Scholar 

  32. R. D. Schoenwald. Ocular pharmacokinetics/pharmacodynamics. In A. K. Mitra (ed.) Ophthalmic Drug Delivery Systems, Marcel Dekker, New York, 1993, pp. 83–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli-Pekka Ranta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranta, VP., Laavola, M., Toropainen, E. et al. Ocular Pharmacokinetic Modeling Using Corneal Absorption and Desorption Rates from in Vitro Permeation Experiments with Cultured Corneal Epithelial Cells. Pharm Res 20, 1409–1416 (2003). https://doi.org/10.1023/A:1025754026449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025754026449

Navigation