Skip to main content
Log in

Retinal Delivery of Celecoxib Is Several-Fold Higher Following Subconjunctival Administration Compared to Systemic Administration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We have previously demonstrated that celecoxib, a selective COX-2 inhibitor, reaches the retina following repeated oral administrations and inhibits diabetes-induced vascular endothelial growth factor (VEGF) mRNA expression and vascular leakage in a rat model. The aim of this study was to quantify the relative retinal bioavailability of celecoxib from the subconjunctival route compared to a systemic route.

Methods. The plasma and ocular tissue distribution of celecoxib was determined in male Sprague-Dawley rats following subconjunctival and intraperitoneal administrations of drug suspension at a dose of 3 mg/rat. The animals were sacrificed at 0.5, 1, 2, 3, 4, 8, and 12 h post-dosing, the blood was collected, and the eyes were enucleated and frozen. The plasma, sclera, retina, vitreous, lens, and the cornea were isolated and celecoxib levels were determined using an HPLC method. The tissue exposure of the drug was measured as the area under the curve (AUC0-≈) of the concentration vs. time profiles. The relative bioavailability was estimated as the AUC0-≈ ratio between subconjunctival and intraperitoneal groups.

Results. For the subconjunctivally dosed (ipsilateral) eye, the AUC0-≈ ratios between subconjunctival and intraperitoneal groups were 0.8 ± 0.1, 53 ± 4, 54 ± 8, 145 ± 21, 61 ± 16, and 52 ± 6 for plasma, sclera, retina, vitreous, lens, and cornea, respectively. For the contralateral ocular tissues, the AUC0-≈ ratios were 1.2 ± 0.3, 1.1 ± 0.3, 1.1 ± 0.4, 1.0 ± 0.3, and 1.2 ± 0.3 in the sclera, retina, vitreous, lens, and the cornea, respectively, between the subconjunctival and the intraperitoneal groups. Assuming that the drug AUCs in contralateral eye were equal to the systemic pathway contribution to AUCs in the ipsilateral eye, the percent contribution of local pathways as opposed to systemic circulation for celecoxib delivery to the ipsilateral eye tissues was estimated to be 98% or greater.

Conclusions. The retinal delivery of celecoxib was substantially higher following subconjunctival administration compared to the intraperitoneal route. The transscleral pathway almost completely accounts for the retinal celecoxib delivery following subconjunctival administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. P. Ayalasomayajula and U. B. Kompella. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozoto-cin-induced diabetic rat model. Eur. J. Pharmacol. 458:283–289 (2003).

    Google Scholar 

  2. L. P. Aiello, R. L. Avery, P. G. Arrigg, B. A. Keyt, H. D. Jampel, S. T. Shah, L. R. Pasquale, H. Thieme, M. A. Iwamoto, J. E. Park, H. V. Nguyen, L. M. Aiello, N. Ferrara, G. L. King. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331: 1480–1487 (1994).

    Google Scholar 

  3. A. P. Adamis, J. W. Miller, M. T. Bernal, D. J. D'Amico, J. Folkman, T. K. Yeo, and K. T. Yeo. Increased vascular endothe-lial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118:445–450 (1994).

    Google Scholar 

  4. R. P. Danis, T. A. Ciulla, M. Criswell, and L. Pratt. Anti-angiogenic therapy of proliferative diabetic retinopathy. Expert Opin. Pharmacother.2:395–407 (2001).

    Google Scholar 

  5. N. Patel, L. Sun, D. Moshinsky, H. Chen, K. M. Leahy, P. Le, K. G. Moss, X. Wang, A. Rice, D. Tam, A. D. Laird, X. Yu, Q. Zhang, C. Tang, G. McMahon, and A. Howlett. A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability. J. Pharmacol. Exp. Ther. 306:838–845 (2003).

    Google Scholar 

  6. H. Ozaki, M. S. Seo, K. Ozaki, H. Yamada, E. Yamada, N. Oka-moto, F. Hofmann, J. M. Wood, and P. A. Campochiaro. Block-ade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am. J. Pathol. 156:697–707 (2000).

    Google Scholar 

  7. L. P. Aiello and J. S. Wong. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int. Suppl. 77:S113–S119 (2000).

    Google Scholar 

  8. S. H. Lee, E. Soyoola, P. Chanmugam, S. Hart, W. Sun, H. Zhong, S. Liou, D. Simmons, and D. Hwang. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267:25934–25938 (1992).

    Google Scholar 

  9. X. H. Liu, A. Kirschenbaum, M. Lu, S. Yao, A. Dosoretz, J. F. Holland, and A. C. Levine. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem. 277:50081–50086 (2002).

    Google Scholar 

  10. J. Pe'er, D. Shweiki, A. Itin, I. Hemo, H. Gnessin, and E. Keshet. Hypoxia-induced expression of vascular endothelial growth fac-tor by retinal cells is a common factor in neovascularizing ocular diseases. Lab. Invest. 72:638–645 (1995).

    Google Scholar 

  11. P. Needleman and P. C. Isakson. The discovery and function of COX-2. J. Rheumatol. 24:6–8 (1997).

    Google Scholar 

  12. T. Okamoto and O. Hino. Expression of cyclooxygenase-1 and-2 mRNA in rat tissues: tissue-specific difference in the expression of the basal level of mRNA. Int. J. Mol. Med. 6:455–457 (2000).

    Google Scholar 

  13. S. R. Ahmad, C. Kortepeter, A. Brinker, M. Chen and J. Beitz. Renal failure associated with the use of celecoxib and rofecoxib. Drug Saf. 25:537–544 (2002).

    Google Scholar 

  14. M. Epstein. Cardiovascular and renal effects of COX-2-specific inhibitors: recent insights and evolving clinical implications. Am. J. Ther. 8:81–83 (2001).

    Google Scholar 

  15. G. A. Peyman and G. J. Ganiban. Delivery systems for intraoc-ular routes. Adv. Drug Deliv. Rev. 16:107–123 (1995).

    Google Scholar 

  16. C. P. S. Cheruvu, S. P. Ayalasomayajula, and U. B. Kompella. Retinal delivery of sodium fluorescein, budesonide, and cele-coxib following subconjunctival injection. Drug Delivery Tech-nology 3:62–67 (2003).

    Google Scholar 

  17. G. Gudauskas, C. Kumi, C. Dedhar, N. Bussanich and J. Root-man. Ocular pharmacokinetics of subconjunctivally versus intra-venously administered 6-mercaptopurine. Can. J. Ophthalmol. 20:110–113 (1985).

    Google Scholar 

  18. G. S. Kalsi, H. K. Silver and J. Rootman. Ocular pharmacokinet-ics of dacarbazine following subconjunctival versus intravenous administration in the rabbit. Can. J. Ophthalmol. 26:247–251 (1991).

    Google Scholar 

  19. D. Maurice. Review: practical issues in intravitreal drug delivery. J. Ocul. Pharmacol. Ther. 17:393–401 (2001).

    Google Scholar 

  20. A. Hay, H. W. Flynn Jr., J. I. Hoffman, and A. H. Rivera. Needle penetration of the globe during retrobulbar and peribulbar injec-tions. Ophthalmology 98:1017–1024 (1991).

    Google Scholar 

  21. T. W. Lee and J. R. Robinson. Drug delivery to the posterior segment of the eye: some insights on the penetration pathways after subconjunctival injection. J. Ocul. Pharmacol. Ther. 17:565–572 (2001).

    Google Scholar 

  22. O. Weijtens, R. C. Schoemaker, E. G. Lentjes, F. P. Romijn, A. F. Cohen, and J. C. van Meurs. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar in-jection, or an oral dose. Ophthalmology 107:1932–1938 (2000).

    Google Scholar 

  23. M. S. Guirguis, S. Sattari, and F. Jamali. Pharmacokinetics of celecoxib in the presence and absence of interferon-induced acute inflammation in the rat: application of a novel HPLC assay. J. Pharm. Pharm. Sci. 4:1–6 (2001).

    Google Scholar 

  24. U. B. Kompella, N. Bandi, and S. P. Ayalasomayajula. Subcon-junctival nano-and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expres-sion. Invest. Ophthalmol. Vis. Sci. 44:1192–1201 (2003).

    Google Scholar 

  25. U. B. Kompella and V. H. L. Lee. Barriers to drug transport in ocular epithelia. In G. L. Amidon, P. I. Lee, and E. M. Topp (eds.), Transport Processes in Pharmaceutical Systems,Marcel Dekker, New York, 1999, pp. 317–376.

    Google Scholar 

  26. D. H. Geroski and H. F. Edelhauser. Transscleral drug delivery for posterior segment disease. Adv. Drug Deliv. Rev. 52:37–48 (2001).

    Google Scholar 

  27. Y. Yanagi, Y. Tamaki, R. Obata, K. Muranaka, N. Homma, H. Matsuoka, and H. Mano. Subconjunctival administration of bu-cillamine suppresses choroidal neovascularization in rat. Invest. Ophthalmol. Vis. Sci. 43:3495–3499 (2002).

    Google Scholar 

  28. Y. Yanagi, Y. Tamaki, Y. Inoue, R. Obata, K. Muranaka, and N. Homma. Subconjunctival doxifluridine administration suppresses rat choroidal neovascularization through activated thymidine phosphorylase. Invest. Ophthalmol. Vis. Sci. 44:751–754 (2003).

    Google Scholar 

  29. E. Sakurai, A. Anand, B. K. Ambati, N. van Rooijen and J. Ambati. Macrophage depletion inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44:3578–3585 (2003).

    Google Scholar 

  30. S. F. Wen, Z. Chen, J. Nery, and B. Faha. Characterization of adenovirus p21 gene transfer, biodistribution, and immune re-sponse after local ocular delivery in New Zealand white rabbits. Exp. Eye Res. 77:355–365 (2003).

    Google Scholar 

  31. T. W. Kim, J. D. Lindsey, M. Aihara, T. L. Anthony, and R. N. Weinreb. Intraocular distribution of 70-kDa dextran after sub-conjunctival injection in mice. Invest. Ophthalmol. Vis. Sci. 43: 1809–1816 (2002).

    Google Scholar 

  32. S. O. Hung, A. Patterson, D. I. Clark, and P. J. Rees. Oral acy-clovir in the management of dendritic herpetic corneal ulceration. Br. J. Ophthalmol. 68:398–400 (1984).

    Google Scholar 

  33. P. A. Thomas, C. M. Kalavathy, D. J. Abraham and J. Rajas-ekaran. Oral ketoconazole in Keratomycosis. Indian J. Ophthal-mol. 35:197–203 (1987).

    Google Scholar 

  34. A. M. Avunduk, R. W. Beuerman, E. D. Warnel, H. E. Kaufman, and D. Greer. Comparison of efficacy of topical and oral flucona-zole treatment in experimental Aspergillus keratitis. Curr. Eye Res. 26:113–117 (2003).

    Google Scholar 

  35. D. M. Meisler, M. B. Raizman, and E. I. Traboulsi. Oral eryth-romycin treatment for childhood blepharokeratitis. J. AAPOS 4:379–380 (2000).

    Google Scholar 

  36. G. M. Grass and J. R. Robinson. Mechanisms of corneal drug penetration. I: In vivo and in vitro kinetics. J. Pharm. Sci. 77:3–14 (1988).

    Google Scholar 

  37. I. Ahmed and T. F. Patton. Importance of the noncorneal ab-sorption route in topical ophthalmic drug delivery. Invest. Oph-thalmol. Vis. Sci. 26:584–587 (1985).

    Google Scholar 

  38. R. D. Schoenwald, G. S. Deshpande, D. G. Rethwisch, and C. F. Barfknecht. Penetration into the anterior chamber via the con-junctival/ scleral pathway. J. Ocul. Pharmacol. Ther. 13:41–59 (1997).

    Google Scholar 

  39. E. F. Erkin, U. Gunenc, F. H. Oner, A. Gelal, Y. Erkin, and H. Guven. Penetration of amikacin into aqueous humor of rabbits. Ophthalmologica 215:299–302 (2001).

    Google Scholar 

  40. O. Weijtens, E. J. Feron, R. C. Schoemaker, A. F. Cohen, E. G. Lentjes, F. P. Romijn, and J. C. van Meurs. High concentration of dexamethasone in aqueous and vitreous after subconjunctival in-jection. Am. J. Ophthalmol. 128:192–197 (1999).

    Google Scholar 

  41. J. Rootman, N. Bussanich, G. Gudauskas, and C. Kumi. Effects of subconjunctivally injected antineoplastic agents on three mod-els of corneal inflammation. Can. J. Ophthalmol. 20:142–146 (1985).

    Google Scholar 

  42. J. Ambati, C. S. Canakis, J. W. Miller, E. S. Gragoudas, A. Edwards, D. J. Weissgold, I. Kim, F. C. Delori, and A. P. Adamis. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41:1181–1185 (2000).

    Google Scholar 

  43. N. Unlu and J. R. Robinson. Scleral permeability to hydrocorti-sone and mannitol in the albino rabbit eye. J. Ocul. Pharmacol. Ther. 14:273–281 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayalasomayajula, S.P., Kompella, U.B. Retinal Delivery of Celecoxib Is Several-Fold Higher Following Subconjunctival Administration Compared to Systemic Administration. Pharm Res 21, 1797–1804 (2004). https://doi.org/10.1023/B:PHAM.0000045231.51924.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000045231.51924.e8

Navigation