Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse

Abstract

The osteochondrodysplasias are a genetically heterogeneous group of disorders affecting skeletal development, linear growth and the maintenance of cartilage and bone. We have studied a large inbred Pakistani family with a distinct form of recessively inherited spondyloepimetaphyseal dysplasia (SEMD) and mapped a gene associated with this dwarfing condition to chromosome 10q23–24, a region syntenic with the locus for the brachymorphic mutation on mouse chromosome 19. We identified two orthologous genes, ATPSK2 and Atpsk2, encoding novel ATP sulfurylase/APS kinase orthologues in the respective regions of the human and mouse genomes. We characterized a nonsense mutation in ATPSK2 in the SEMD family and a missense mutation in the region of Atpsk2 encoding the APS kinase activity in the brachymorphic mouse. ATP sulfurylase/APS kinase catalyses the metabolic activation of inorganic sulfate to PAPS, the universal donor for post-translational protein sulfation in all cell types. The cartilage-specificity of the human and mouse phenotypes provides further evidence of the critical role of sulfate activation in the maturation of cartilage extracellular matrix molecules and the effect of defects in this process on the architecture of cartilage and skeletogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Partial pedigree of the Pakistani SEMD family showing the most likely haplotypes for the chromosome 10 markers.
Figure 2: Genetic mapping of SEMD Pakistani type and brachymorphic.
Figure 3: ATPSK2 mutation in the SEMD family.
Figure 4: Alignment of the segment of the mouse Atpsk2 encoded protein containing the brachymorphic mutation with similar regions from orthologous and related proteins from other species.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lipmann, F. Biological sulfate activation and transfer. Science 128, 575–580 (1958).

    Article  CAS  Google Scholar 

  2. Elgavish, A., Smith, J.B., Pillion, D.J. & Meezan, E. Sulfate transport in human lung fibroblasts (IMR-90). J. Cell Physiol. 125, 243–250 ( 1985).

    Article  CAS  Google Scholar 

  3. Markovich, D., Forgo, J., Stange, G., Biber, J. & Murer, H. Expression cloning of rat renal Na+/SO4(2-) cotransport . Proc. Natl Acad. Sci. USA VID>90, 8073– 8077 (1993).

  4. Bissig, M., Hagenbuch, B., Stieger, B., Koller, T. & Meier, P.J. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J. Biol. Chem. 269, 3017–3021 (1994).

    CAS  PubMed  Google Scholar 

  5. Hastbacka, J. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78, 1073–1087 ( 1994).

    Article  CAS  Google Scholar 

  6. Everett, L.A. et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genet. 17, 411–422 (1997).

    Article  CAS  Google Scholar 

  7. Geller, D.H., Henry, J.G., Belch, J. & Schwartz, N.B. Co-purification and characterization of ATP-sulfurylase and adenosine-5´-phosphosulfate kinase from rat chondrosarcoma. J. Biol. Chem. 262, 7374–7382 (1987).

    CAS  PubMed  Google Scholar 

  8. Mandon, E.C., Milla, M.E., Kempner, E. & Hirschberg, C.B. Purification of the golgi adenosine 3´-phosphate 5´-phosphosulfate transporter, homodimer within the membrane. Proc. Natl Acad. Sci. USA 91, 10707–10711 (1994).

    Article  CAS  Google Scholar 

  9. Ozeran, J.D., Westley, J. & Schwartz, N.B. Kinetics of PAPS translocase: evidence for an antiport mechanism. Biochemistry 35, 3685– 3694 (1996).

    Article  CAS  Google Scholar 

  10. Hastbacka, J. et al. Atelosteogenesis type II is caused by mutations in the diastrophic dyplasia sulfate transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58, 255–262 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Superti-Furga, A. et al. A family of chondrodysplasias caused by mutations in the diastrophic dysplasia transporter gene and associated with impaired sulfation of proteoglycans. Ann. N.Y. Acad. Sci. 785, 195–201 (1996).

    Article  CAS  Google Scholar 

  12. Superti-Furga, A. et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Nature Genet. 12, 100–102 (1996).

    Article  CAS  Google Scholar 

  13. Rossi, A., Bonaventure, J., Delezoide, A.L., Cetta, G. & Superti-Furga, A. Undersulfation of proteoglycans synthesized by chondrocytes from patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter . J. Biol. Chem. 271, 18456– 18464 (1996).

    Article  CAS  Google Scholar 

  14. Rossi, A., Bonaventure, J., Delezoide, A.L., Superti-Furga, A. & Cetta, G. Undersulfation of cartilage proteoglycans ex vivo and increased contribution of amino acid sulfur to sulfation in vitro in McAlister dysplasia/atelosteogenesis type 2. Eur. J. Biochem. 248, 741– 747 (1997).

    Article  CAS  Google Scholar 

  15. Rossi, A. et al. In vivo and in vitro proteoglycan sulfation in sulfate transporter chondrodyplasias. Matrix Biology, in press.

  16. Lane, P. & Dickie, M.M. Three recessive mutations producing diproportionate dwarfing in mice: achondroplasia, brachymorphic, and stubby . J. Hered. 59, 300–308 (1968).

    Article  CAS  Google Scholar 

  17. Orkin, R.W., Pratt, R.M. & Martin, G.R. Undersulfated chondroitin sulfate in the cartilage matrix of brachymorphic mice. Dev. Biol. 50, 82–94 (1976).

    Article  CAS  Google Scholar 

  18. Orkin, R.W., Williams, B.R., Cranley, R.E., Poppke, D.C. & Brown, K.S. Defects in the cartilaginous growth plates of brachymorphic mice. J. Cell Biol. 73, 287–299 (1977).

    Article  CAS  Google Scholar 

  19. Schwartz, N.B., Ostrowski, V., Brown, K.S. & Pratt, R.M. Defective PAPS-synthesis in epiphyseal cartilage from brachymorphic mice. Biochem. Biophys. Res. Commun. 82, 173– 178 (1978).

    Article  CAS  Google Scholar 

  20. Sugahara, K. & Schwartz, N.B. Defect in 3´-phosphoadenosine 5´-phosphosulfate formation in brachymorphic mice. Proc. Natl Acad. Sci. USA 76, 6615–6618 (1979).

    Article  CAS  Google Scholar 

  21. Lyle, S., Stanczak, J., Ng, K. & Schwartz, N.B. Rat chondrosarcoma ATP sulfurylase and adenosine 5´-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry 33, 5920 –5925 (1994).

    Article  CAS  Google Scholar 

  22. Li, H. et al. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5´-phosphosulfate kinase. J. Biol. Chem. 270, 29453–29459 ( 1995).

    Article  CAS  Google Scholar 

  23. Lyle, S., Stanczak,, Westley, J. & Schwartz, N.B. Sulfate-activating enzymes in normal and brachymorphic mice: evidence for a channeling defect . Biochemistry 34, 940– 945 (1995).

    Article  CAS  Google Scholar 

  24. Miller, W.A. & Flynn-Miller, K.L. Achondroplastic, brachymorphic and stubby chondrodystophies in mice. J. Comp. Pathol. 86, 349–363 (1976).

    Article  CAS  Google Scholar 

  25. O'Brien, E.P. et al. Molecular map of chromosome 19 including three genes affecting bleeding time: ep, ru and bm. Mamm. Genome 5, 356–360 (1994).

    Article  CAS  Google Scholar 

  26. Rusiniak, M.E. et al. Molecular markers near the mouse brachymorphic (bm) gene, which affects connective tissues and bleeding time. Mamm. Genome 7, 98–102 ( 1996).

    Article  CAS  Google Scholar 

  27. Ahmad, M. et al. A distinct, autosomal recessive form of spondyloepimetaphyseal dysplasia segregating in an inbred Pakistani kindred. Am. J. Med. Genet. 78, 468–473 ( 1998).

    Article  CAS  Google Scholar 

  28. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  29. Kozak, M. An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNA's. Nucleic Acids Res. 15, 8125– 8148 (1987).

    Article  CAS  Google Scholar 

  30. Willing, M.C., Deschenes, S.P., Slayton, R.L. & Roberts, E.J. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am. J. Hum. Genet. 59, 799–809 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugahara, K. & Schwartz, N.B. Defect in 3´-phosphoadenosine 5´-phosphosulfate synthesis in brachymorphic mice. II. tissue distribution of the defect. Arch. Biochem. Biophys. 214, 602–609 (1982).

    Article  CAS  Google Scholar 

  32. Rapraeger, A.C., Krufka, A. & Olwin, B.B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    Article  CAS  Google Scholar 

  33. Yayon, A., Klagsburn, M., Esko, J.D., Leder, P. & Ornitz, D.M. Cell surface, heparin-like molecules are required for binding of basic Fibroblast Growth Factor to its high-affinity receptor. Cell 64, 841– 848 (1991).

    Article  CAS  Google Scholar 

  34. Schlessinger, J., Lax, I. & Lemmon, M. Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? Cell 83, 357–360 (1995).

    Article  CAS  Google Scholar 

  35. Bullock, S.I., Fletcher, J.M., Beddington, R.S.P. & Wilson, V.A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    Article  CAS  Google Scholar 

  36. Lyman, S.D. & Poland, A. Effect of the brachymorphic trait in mice on xenobiotic sulfate ester formation. Biochem. Pharmacol. 32, 3345–3350 ( 1983).

    Article  CAS  Google Scholar 

  37. Boberg, E.W., Miller, E.C., Miller, J.A., Poland, A. & Liem, A. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1´-sulfooxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1´-hydroxysafrole in mouse liver . Cancer Res. 43, 5163– 5173 (1983).

    CAS  PubMed  Google Scholar 

  38. Lai, C.C., Miller, E.C., Miller, J.A. & Liem, A. Initiation of hepatocarcinogenesis in infant male B6C3F1 mice by N-hydroxy-2-aminofluorene depends primarily on metabolism to N-sulfooxy-2-aminofluorene and formation of DNA-(deoxyguanosin-8-yl)-2-aminofluorene adducts. Carcinogenesis 8, 471–478 ( 1987).

    Article  CAS  Google Scholar 

  39. Manenti, G. et al. Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice. Genomics 23, 118– 124 (1994).

    Article  CAS  Google Scholar 

  40. Blache, D., Becchi, M. & Davignon, J. Occurrence and biological effects of cholesteryl sulfate on blood platelets . Biochim. Biophys. Acta. 1259, 291–296 (1995).

    Article  Google Scholar 

  41. Gray, I.C. et al. An integrated physical and genetic map spanning chromosome band 10q24. Genomics 43, 85– 88 (1997).

    Article  CAS  Google Scholar 

  42. Terwilliger, J.D. & Ott, J. Handbook of human genetic linkage. (John Hopkins University Press, Baltimore, 1994).

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH grants HD22657 (D.H.C.), AR02038 (D.K.), HL51480 (R.T.S.) and HL31698 (R.T.S.), by award C-QU/BIO(264) from the Pakistan Science Foundation (M.A. and M.F.U.) and by grant 45401.95 from the Swiss National Science Foundation (A.S.-F.). We thank E. Delot-Vilain for assistance with the preparation of figures and S. Brodie and E. Delot-Vilain for helpful discussions during the course of this work. We thank A. Christiano and J.A. McGrath for providing reference DNA samples from individuals of Pakistani origin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Cohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, M., King, L., Krakow, D. et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 20, 157–162 (1998). https://doi.org/10.1038/2458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing