Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence

Abstract

Acetylcholinesterase, an essential enzyme of the nervous system, rapidly terminates the action of acetylcholine released into the synapse. Acetylcholinesterase is also found (in lower abundance) in extrajunctional areas of muscle and nerve and on erythrocyte membranes1,2. Hydrodynamic analyses of the native enzyme3 and characterization of its dissociated subunits have revealed multiple enzyme forms which can be divided into two classes: (1) dimension-ally asymmetric forms which are usually found within the synapse and contain a collagen-like structural subunit disulphide-linked to the catalytic subunits; and (2) globular forms which appear to be widely distributed on the outer surface of cell membranes. Both forms have been characterized in the ray Torpedo californica and, although their catalytic behaviours seem to be identical, they differ slightly in amino-acid composition, peptide maps and reactivity with certain monoclonal antibodies4–7 . Here, we report the complete amino-acid sequence of an acetylcholinesterase inferred from the sequence of a complementary DNA clone. The 575-residue protein shows significant homology with the C-terminal portion of thyroglobulin8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Massoulié, J. & Bon, S. A. Rev. Neurosci. 5, 57–106 (1982).

    Article  Google Scholar 

  2. Rosenberry, T. L. in The Enzymes of Biological Membranes 2nd edn, Vol. 4 (ed. Martonosi, A. N.) 403–429 (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Massoulié, J. Eur. J. Biochem. 11, 441–455 (1969).

    Article  Google Scholar 

  4. Lee, S. L., Camp, S. J. & Taylor, P. J. biol. Chem. 257, 12302–12309 (1982).

    CAS  PubMed  Google Scholar 

  5. Futerman, A. M., Fionini, R. M., Roth, E., Low, M. G. & Silman, I. Biochem. J. 226, 369–377 (1985).

    Article  CAS  Google Scholar 

  6. Lee, S. L., Heinemann, S. & Taylor, P. J. biol. Chem. 257, 12283–12291 (1982).

    CAS  Google Scholar 

  7. Doctor, B. P., Camp, S., Gentry, M. K., Taylor, S. S. & Taylor, P. Proc. natn. Acad. Sci. U.S.A. 18, 5767–5771 (1983).

    Article  ADS  Google Scholar 

  8. Mercken, L., Simons, M. J., Swillens, S., Massaer, M. & Vassart, G. Nature 316, 647–650 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Taylor, P. & Jacobs, N. M. Molec. Pharmac. 10, 78–92 (1974).

    CAS  Google Scholar 

  10. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  Google Scholar 

  11. Garnier, J., Gaye, P., Mercier, J. C. & Robson, B. Biochimie 62, 231–239 (1980).

    Article  CAS  Google Scholar 

  12. Kyte, J. & Doolittle, R. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  13. MacPhee-Quigley, K., Taylor, P. & Taylor, S. S. J. biol. Chem. 260, 12185–12189 (1985).

    CAS  PubMed  Google Scholar 

  14. Sikorav, J. L., Grassi, J. & Bon, S. Eur. J. Biochem. 145, 519–529 (1984).

    Article  CAS  Google Scholar 

  15. Chirgwin, J. M., Przybyla, A. E., McDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  16. Soreq, H., Zevin-Sankin, D. & Razon, N. EMBO J. 3, 1371–1375 (1984).

    Article  CAS  Google Scholar 

  17. Doolittle, R. F. Science 214, 149–159 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 80, 1111–1115 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Noda, M. et al. Nature 299, 793–797 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Noda, M. et al. Nature 301, 251–255 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Changeux, J. P. Molec. Pharmac. 2, 369–392 (1966).

    CAS  Google Scholar 

  22. Fallon, J. R., Nitkin, R. M., Reist, N. E., Wallace, B. G. & McMahan, U. J. Nature 315, 571–574 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Taylor, P., Brown, R. D. & Johnson, D. A. Curr. Topics Membranes Transport 18, 407–444 (1983).

    Article  CAS  Google Scholar 

  24. Changeux, J.-P., Devilers-Thiery, A. & Chemouilli, P. Science 225, 1335–1345 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Rosenberry, T. L. Adv. Enzym. Relat. Areas molec. Biol. 43, 102–218 (1975).

    Google Scholar 

  26. Taylor, P. & Jacobs, N. M. Molec. Pharmac. 10, 93–107 (1974).

    CAS  Google Scholar 

  27. Lockridge, O. in Cholinesterases: Fundamental and Applied Aspects (eds Brzin, M., Barnard, E. A. & Sket, D.) 5–11 (Walter de Gruyter, Berlin, 1984).

    Google Scholar 

  28. Hartley, B. S. Phil. Trans. R. Soc. B257, 77–87 (1970).

    Article  CAS  Google Scholar 

  29. Davie, E. W., Fujikawa, K., Kurachi, K. & Kisiel, W. Adv. Enzym. 48, 277–318 (1979).

    CAS  Google Scholar 

  30. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  31. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Staden, R. Nucleic Acids Res. 8, 3673–3694 (1980).

    Article  CAS  Google Scholar 

  33. Bause, E. Biochem. J. 209, 331–336 (1983).

    Article  CAS  Google Scholar 

  34. Benton, W. D. & Davis, R. W. Science 196, 180–182 (1977).

    Article  ADS  CAS  Google Scholar 

  35. Sinha, N. D., Biernat, J., McManus, J. & Koster, H. Nucleic Acids Res. 12, 4539–4557 (1984).

    Article  CAS  Google Scholar 

  36. Wallace, R. B. et al. Nucleic Acids Res. 9, 879–894 (1981).

    Article  CAS  Google Scholar 

  37. Davis, R. W., Botstein, D. & Roth, J. R. Advanced Bacterial Genetics, 70–82 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  38. Thomas, P. S. Meth. Enzym. 100, 255–266 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Camp, S., Maulet, Y. et al. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319, 407–409 (1986). https://doi.org/10.1038/319407a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319407a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing