Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molybdenum cofactors, enzymes and pathways

Abstract

The trace element molybdenum is essential for nearly all organisms and forms the catalytic centre of a large variety of enzymes such as nitrogenase, nitrate reductases, sulphite oxidase and xanthine oxidoreductases. Nature has developed two scaffolds holding molybdenum in place, the iron–molybdenum cofactor and pterin-based molybdenum cofactors. Despite the different structures and functions of molybdenum-dependent enzymes, there are important similarities, which we highlight here. The biosynthetic pathways leading to both types of cofactor have common mechanistic aspects relating to scaffold formation, metal activation and cofactor insertion into apoenzymes, and have served as an evolutionary 'toolbox' to mediate additional cellular functions in eukaryotic metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molybdenum-containing cofactors.
Figure 2: Three-dimensional structures of representative members of molybdenum-containing enzymes.
Figure 3: Biosynthesis of FeMo-co.
Figure 4: Proposed mechanisms for molybdate activation in FeMo-co and Moco biosynthesis.
Figure 5: Biosynthesis of the pyranopterin-based molybdenum cofactors.
Figure 6: Domain structure and function of Moco sulphurase Aba3 from Arabidopsis thaliana.
Figure 7: Human Moco deficiency.

Similar content being viewed by others

References

  1. Dos Santos, P. C., Dean, D. R., Hu, Y. & Ribbe, M. W. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev. 104, 1159–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz, G. Molybdenum cofactor biosynthesis and deficiency. Cell. Mol. Life Sci. 62, 2792–2810 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hille, R. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27, 360–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y. & Gladyshev, V. N. Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 379, 881–899 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bevers, L. E., Hagedoorn, P.-L. & Hagen, W. R. The bioinorganic chemistry of tungsten. Coord. Chem. Rev. 253, 269–290 (2009).

    Article  CAS  Google Scholar 

  6. Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3012 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rajagopalan, K. V. & Johnson, J. L. The pterin molybdenum cofactors. J. Biol. Chem. 267, 10199–10202 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Eady, R. R. Structure–function relationships of alternative nitrogenases. Chem. Rev. 96, 3013–3030 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Schindelin, H. et al. Structure of ADP·AIF4 -stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Rothery, R. A., Workun, G. J. & Weiner, J. H. The prokaryotic complex iron-sulfur molybdoenzyme family. Biochim. Biophys. Acta 1778, 1897–1929 (2008). This paper is a systematic and comprehensive overview of prokaryotic molybdenum-containing enzymes of the DMSOR family.

    Article  CAS  PubMed  Google Scholar 

  12. Hille, R. Molybdenum-containing hydroxylases. Arch. Biochem. Biophys. 433, 107–116 (2005). This paper is a comprehensive overview of structure and reaction mechanisms of molybdenum-containing hydroxylases of the xanthine oxidase family.

    Article  CAS  PubMed  Google Scholar 

  13. Feng, C., Tollin, G. & Enemark, J. H. Sulfite oxidizing enzymes. Biochim. Biophys. Acta 1774, 527–539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moura, J. J., Brondino, C. D., Trincao, J. & Romao, M. J. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J. Biol. Inorg. Chem. 9, 791–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bertero, M. G. et al. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nature Struct. Biol. 10, 681–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Kisker, C. et al. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91, 973–983 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Fischer, K. et al. Crystal structure of the yeast nitrate reductase molybdenum domain provides insight into eukaryotic nitrate assimilation. Plant Cell 17, 1167–1179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eilers, T. et al. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J. Biol. Chem. 276, 46989–46994 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Schrader, N. et al. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 11, 1251–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kappler, U. & Bailey, S. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J. Biol. Chem. 280, 24999–25007 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hansch, R. et al. Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J. Biol. Chem. 281, 6884–6888 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Campbell, W. H. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 277–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Mendel, R. R. & Bittner, F. Cell biology of molybdenum. Biochim. Biophys. Acta 1763, 621–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Enroth, C. et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl Acad. Sci. USA 97, 10723–10728 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Truglio, J. J. et al. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus . Structure 10, 115–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Garattini, E. et al. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem. J. 372, 15–32 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seo, M. et al. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl Acad. Sci. USA 97, 12908–12913 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neumann, M. et al. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli. FEBS J. 276, 2762–2774 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Dobbek, H. et al. Catalysis at a dinuclear [CuSMo(=O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc. Natl Acad. Sci. USA 99, 15971–15976 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrison, R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33, 774–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Havemeyer, A. et al. Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J. Biol. Chem. 281, 34796–34802 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Groysman, S. & Holm, R. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 48, 2310–2320 (2009). This paper is a comprehensive review of the chemical synthesis of analogues of pterin cofactors of molybdenum enzymes and the FeMo-co and P-cluster of nitrogenase MoFe-protein.

    Article  CAS  PubMed  Google Scholar 

  33. Hu, Y. et al. Assembly of nitrogenase MoFe protein. Biochemistry 47, 3973–3981 (2008). This paper reports a recent development in the biosynthesis of the FeMo-co and P-cluster of nitrogenase MoFe-protein.

    Article  CAS  PubMed  Google Scholar 

  34. Smith, A. D. et al. NifS-mediated assembly of [4Fe-4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry 44, 12955–12969 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Allen, R. M., Chatterjee, R., Ludden, P. W. & Shah, V. K. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J. Biol. Chem. 270, 26890–26896 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Schmid, B. et al. Structure of a cofactor-deficient nitrogenase MoFe protein. Science 296, 352–356 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Curatti, L., Ludden, P. W. & Rubio, L. M. NifB-dependent in vitro synthesis of the iron–molybdenum cofactor of nitrogenase. Proc. Natl Acad. Sci. USA 103, 5297–5301 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, Y., Fay, A. W. & Ribbe, M. W. Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc. Natl Acad. Sci. USA 102, 3236–3241 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corbett, M. C. et al. Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc. Natl Acad. Sci. USA 103, 1238–1243 (2006). This paper is the first X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS)-based structural analysis of the FeMo-co precursor on NifEN.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, Y. et al. FeMo cofactor maturation on NifEN. Proc. Natl Acad. Sci. USA 103, 17119–17124 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng, L., White, R. H. & Dean, D. R. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J. Bacteriol. 179, 5963–5966 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imperial, J., Ugalde, R. A., Shah, V. K. & Brill, W. J. Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae . J. Bacteriol. 158, 187–194 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hernandez, J. A. et al. Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor. Proc. Natl Acad. Sci. USA 105, 11679–11684 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, Y. et al. Nitrogenase Fe protein: a molybdate/homocitrate insertase. Proc. Natl Acad. Sci. USA 103, 17125–17130 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Georgiadis, M. M. et al. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii . Science 257, 1653–1659 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Rubio, L. M. et al. Cloning and mutational analysis of the γ gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization. J. Biol. Chem. 277, 14299–14305 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, Y. et al. Molecular insights into nitrogenase FeMoco insertion: TRP-444 of MoFe protein α-subunit locks FeMoco in its binding site. J. Biol. Chem. 281, 30534–30541 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, Y., Fay, A. W. & Ribbe, M. W. Molecular insights into nitrogenase FeMo cofactor insertion: the role of His 362 of the MoFe protein α subunit in FeMo cofactor incorporation. J. Biol. Inorg. Chem. 12, 449–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Fay, A. W., Hu, Y., Schmid, B. & Ribbe, M. W. Molecular insights into nitrogenase FeMoco insertion — the role of His 274 and His 451 of MoFe protein α subunit. J. Inorg. Biochem. 101, 1630–1641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwarz, G. & Mendel, R. R. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu. Rev. Plant Biol. 57, 623–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Schwarz, G., Hagedoorn, P. L. & Fischer, K. in Molecular Microbiology of Heavy Metals (eds Nies, D. H. & Silver, S.) 421–451 (Springer, 2007).

    Book  Google Scholar 

  53. Reiss, J. & Johnson, J. L. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH . Hum. Mutat. 21, 569–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Wuebbens, M. M. & Rajagopalan, K. V. Structural characterization of a molybdopterin precursor. J. Biol. Chem. 268, 13493–13498 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Hanzelmann, P. & Schindelin, H. Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc. Natl Acad. Sci. USA 103, 6829–6834 (2006). This paper describes the structural basis of radical SAM-based conversion of GTP into cPMP.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wuebbens, M. M. & Rajagopalan, K. V. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270, 1082–1087 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Santamaria-Araujo, J. A. et al. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J. Biol. Chem. 279, 15994–15999 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Daniels, J. N., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency. Biochemistry 47, 615–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Hänzelmann, P., Schwarz, G. & Mendel, R. R. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 277, 18303–18312 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. Gutzke, G., Fischer, B., Mendel, R. R. & Schwarz, G. Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. J. Biol. Chem. 276, 36268–36274 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nature Struct. Biol. 8, 42–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Wuebbens, M. M. & Rajagopalan, K. V. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J. Biol. Chem. 278, 14523–14532 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Stallmeyer, B. et al. Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am. J. Hum. Genet. 64, 698–705 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414, 325–329 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Leimkühler, S. & Rajagopalan, K. V. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli . J. Biol. Chem. 276, 22024–22031 (2001).

    Article  PubMed  Google Scholar 

  67. Forlani, F. et al. The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form. FEBS Lett. 579, 6786–6790 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Matthies, A., Rajagopalan, K. V., Mendel, R. R. & Leimkuhler, S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc. Natl Acad. Sci. USA 101, 5946–5951 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuper, J. et al. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430, 803–806 (2004). This paper reports the first protein-complex structures of Moco intermediates and the identification of a novel reaction intermediate essential for metal transfer.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Bevers, L. E. et al. Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors. Biochemistry 47, 949–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Llamas, A., Mendel, R. R. & Schwarz, G. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J. Biol. Chem. 279, 55241–55246 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Llamas, A. et al. The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J. Biol. Chem. 281, 18343–18350 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bevers, L. E., Hagedoorn, P. L., Krijger, G. C. & Hagen, W. R. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J. Bacteriol. 188, 6498–6505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stevenson, C. E. M. et al. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution. Structure 8, 1115–1125 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Vergnes, A. et al. Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J. Biol. Chem. 279, 41398–41403 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bittner, F., Oreb, M. & Mendel, R. R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana . J. Biol. Chem. 276, 40381–40384 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Heidenreich, T., Wollers, S., Mendel, R. R. & Bittner, F. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 280, 4213–4218 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Wollers, S. et al. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 283, 9642–9650 (2008). This paper describes the mechanism and platform principle of Moco sulphuration in eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  79. Neumann, M. et al. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase. J. Biol. Chem. 281, 15701–15708 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Pau, R. N. & Lawson, D. M. Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met. Ions Biol. Syst. 39, 31–74 (2002).

    CAS  PubMed  Google Scholar 

  81. Ataya, F. S. et al. Mcp1 encodes the molybdenum cofactor carrier protein in Chlamydomonas reinhardtii and participates in protection, binding, and storage functions of the cofactor. J. Biol. Chem. 278, 10885–10890 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Fischer, K. et al. Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii . J. Biol. Chem. 281, 30186–30194 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sargent, F. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153, 633–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hollenstein, K., Frei, D. C. & Locher, K. P. Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216 (2007). This paper provides the first structural insight into the family of molybdate and tungstate ABC transporters

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Hollenstein, K. et al. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins. J. Biol. Inorg. Chem. 14, 663–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Tomatsu, H. et al. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc. Natl Acad. Sci. USA 104, 18807–18812 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tejada-Jimenez, M. et al. A high-affinity molybdate transporter in eukaryotes. Proc. Natl Acad. Sci. USA 104, 20126–20130 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baxter, I. et al. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 4, e1000004 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen, S. et al. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J. Biol. Chem. 282, 21561–21571 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Suttle, N. F. The interactions between copper, molybdenum, and sulphur in ruminant nutrition. Annu. Rev. Nutr. 11, 121–140 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Mason, J. Thiomolybdates: mediators of molybdenum toxicity and enzyme inhibitors. Toxicology 42, 99–109 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Mercer, J. F. The molecular basis of copper-transport diseases. Trends Mol. Med. 7, 64–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Brewer, G. J. Anticopper therapy against cancer and diseases of inflammation and fibrosis. Drug Discov. Today 10, 1103–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Johnson, J. L. & Duran, M. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 3163–3177 (McGraw-Hill, 2001).

    Google Scholar 

  95. Zhang, X., Vincent, A. S., Halliwell, B. & Wong, K. P. A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Tan, W. H. et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116, 757–766 (2005).

    Article  PubMed  Google Scholar 

  97. Lee, H.-J. et al. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum. Mol. Genet. 11, 3309–3317 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Schwarz, G. et al. Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli . Hum. Mol. Genet. 13, 1249–1255 (2004). This paper describes the successful therapeutic use of a Moco intermediate (cPMP) to cure Moco deficiency.

    Article  CAS  PubMed  Google Scholar 

  99. Stallmeyer, B. et al. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc. Natl Acad. Sci. USA 96, 1333–1338 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reiss, J. et al. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am. J. Hum. Genet. 68, 208–213 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft (G.S., R.R.M.), the Bundeministerium für Bildung und Forschung (G.S.), the Fonds der Chemischen Industrie (G.S.), the European Union (R.R.M.) and the US National Institutes of Health (grant GM-67626; M.W.R.) is gratefully acknowledged, as is the contribution of all co-workers, especially graduate students and post-docs, during the past ten years.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to G.S. (gschwarz@uni-koeln.de).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, G., Mendel, R. & Ribbe, M. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009). https://doi.org/10.1038/nature08302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08302

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing