Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Albinterferon α-2b: a genetic fusion protein for the treatment of chronic hepatitis C

Abstract

Treatment regimens based on the use of interferon-α (IFN-α) remain the cornerstone of therapy for chronic hepatitis C virus infection, which affects nearly 170 million people worldwide. Treatment options include unmodified IFN-α given three times weekly or pegylated IFNs given once weekly. The albumin-fusion platform takes advantage of the long half-life of human albumin to provide a new treatment approach that allows the dosing frequency of IFN-α to be reduced in individuals with chronic hepatitis C. Albinterferon α-2b (alb-IFN), a recombinant polypeptide composed of IFN-α2b genetically fused to human albumin, has an extended half-life and early evidence indicates that it is efficacious and well tolerated. Pharmacodynamic modeling supports treatment with alb-IFN at 2- or 4-week intervals. Phase 3 registration trials are in progress. The albumin-fusion platform is currently being applied to other important bioactive peptides with short half-lives. These fusion proteins, which are at present in different phases of clinical development, might lead to improved therapies across a broad range of diseases.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Key attributes of the albumin-fusion technology platform.
Figure 2: Biochemical characterization of alb-IFN.
Figure 3: In vitro antiviral activity.
Figure 6: Clinical development program overview.
Figure 4: Pharmacokinetics and viral kinetics of alb-IFN.
Figure 5: Clinical pharmacology in IFN non-responders and treatment-naive individuals with CHC.

Similar content being viewed by others

References

  1. Graddis, T.J., Remmele, R.L. Jr & McGrew, J.T. Designing proteins that work using recombinant technologies. Curr. Pharm. Biotechnol. 3, 285–297 (2002).

    Article  CAS  Google Scholar 

  2. Davis, G.L., Albright, J.E., Cook, S.F. & Rosenberg, D.M. Projecting future complications of chronic hepatitis C in the United States. Liver Transpl. 9, 331–338 (2003).

    Article  Google Scholar 

  3. McHutchison, J.G. et al. Adherence to combination therapy enhances sustained response in genotype-1 infected patients with chronic hepatitis C. Gastroenterology 123, 1061–1069 (2002).

    Article  CAS  Google Scholar 

  4. Balan, V. Albumin-interferon-α in the treatment of chronic hepatitis C. Fut. Virol. 1, 269–277 (2006).

    Article  CAS  Google Scholar 

  5. Capan, Y., Jiang, G., Giovagnoli, S., Na, K.H. & DeLuca, P.P. Preparation and characterization of poly(D,L-lactide-co-glycolide) microspheres for controlled release of human growth hormone. AAPS PharmSciTech 4, E28 (2003).

    Article  Google Scholar 

  6. Chan, Y.P., Meyrueix, R., Kravtzoff, R., Nicolas, F. & Lundstrom, K. Review on Medusa((R)): a polymer-based sustained release technology for protein and peptide drugs. Expert Opin. Drug Deliv. 4, 441–451 (2007).

    CAS  Google Scholar 

  7. Clark, R. et al. Long-acting growth hormones produced by conjugation with polyethylene glycol. J. Biol. Chem. 271, 21969–21977 (1996).

    Article  CAS  Google Scholar 

  8. Duttaroy, A. et al. Development of a long-acting insulin analog using albumin fusion technology. Diabetes 54, 251–258 (2005).

    Article  CAS  Google Scholar 

  9. Glue, P. et al. and the Hepatitis C Intervention Therapy Group. Pegylated interferon-α2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin. Pharmacol. Ther. 68, 556–567 (2000).

    Article  CAS  Google Scholar 

  10. Shaunak, S. et al. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat. Chem. Biol. 2, 312–313 (2006).

    Article  CAS  Google Scholar 

  11. Guichard, G. et al. Melanoma peptide MART(27–35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a β-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes. J. Med. Chem. 43, 3803–3808 (2000).

    Article  CAS  Google Scholar 

  12. Hinds, K.D. et al. PEGylated insulin in PGLA microparticles. In vivo and in vitro analysis. J. Control. Release 104, 447–460 (2005).

    Article  CAS  Google Scholar 

  13. Kurtzhals, P. et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem. J. 312, 725–731 (1995).

    Article  CAS  Google Scholar 

  14. Markert, Y., Koditz, J., Mansfeld, J. & Ulbrich-Hofmann, A.U. Increasing proteolytic resistance of ribonuclease A by protein engineering. Protein Eng. 14, 791–796 (2001).

    Article  CAS  Google Scholar 

  15. Melder, R.J. et al. Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol. Immunother. 54, 535–547 (2005).

    Article  CAS  Google Scholar 

  16. Osborn, B.L. et al. Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur. J. Pharmacol. 456, 149–158 (2002).

    Article  CAS  Google Scholar 

  17. Osborn, B.L. et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-α fusion protein in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 303, 540–548 (2002).

    Article  CAS  Google Scholar 

  18. Pepinsky, R.B. et al. Improved pharmacokinetic properties properties of a polyethylene glycol-modified form of interferon-β-la with preserved in vitro bioactivity. J. Pharmacol. Exp. Ther. 297, 1059–1066 (2001).

    CAS  PubMed  Google Scholar 

  19. Sanchez, A., Tobio, M., Gonzalez, L., Fabra, A. & Alonso, M.J. Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-α. Eur. J. Pharm. Sci. 18, 221–229 (2003).

    Article  CAS  Google Scholar 

  20. Su, C.M. et al. In vitro stability of growth hormone releasing factor (GRF) analogs in porcine plasma. Horm. Metab. Res. 23, 15–21 (1991).

    Article  CAS  Google Scholar 

  21. Wang, W., Ou, Y. & Shi, Y. AlbuBNP, a recominant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm. Res. 21, 2105–2111 (2004).

    Article  CAS  Google Scholar 

  22. Webb, A.I. et al. T cell determinants incorporating β-amino acid residues are protease resistant and remain immunogenic in vivo. J. Immunol. 175, 3810–3818 (2005).

    Article  CAS  Google Scholar 

  23. Hamidi, M., Azadi, A. & Rafiei, P. Pharmacokinetic consequences of pegylation. Drug Deliv. 13, 399–409 (2006).

    Article  CAS  Google Scholar 

  24. Veronese, F.M. & Harris, J.M. Introduction and overview of peptide and protein pegylation. Adv. Drug Deliv. Rev. 54, 453–456 (2002).

    Article  CAS  Google Scholar 

  25. Shechter, Y. et al. Albumin-insulin conjugate releasing insulin slowly under physiological conditions: a new concept for long-acting insulin. Bioconjug. Chem. 16, 913–920 (2005).

    Article  CAS  Google Scholar 

  26. Dutta, R.C. Drug carriers in pharmaceutical design: promises and progress. Curr. Pharm. Des. 13, 761–769 (2007).

    Article  CAS  Google Scholar 

  27. Malik, D.K., Baboota, S., Ahuja, A., Hasan, S. & Ali, J. Recent advances in protein and peptide drug delivery systems. Curr. Drug Deliv. 4, 141–151 (2007).

    CAS  Google Scholar 

  28. Purcell, A.W., McCluskey, J. & Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 6, 404–414 (2007).

    Article  CAS  Google Scholar 

  29. Peters, T. All About Albumin (Academic, San Diego, 1996).

    Google Scholar 

  30. Carter, D.C. & Ho, J.X. Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994).

    Article  CAS  Google Scholar 

  31. Zunszain, P.A. et al. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 3, 6 (2003).

    Article  Google Scholar 

  32. Halpern, W. et al. Albugranin, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm. Res. 19, 1720–1729 (2002).

    Article  CAS  Google Scholar 

  33. Baggio, L.L., Huang, Q., Brown, T.J. & Drucker, D.J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  Google Scholar 

  34. Ghose, S. et al. Antibody variable region interactions with Protein A: implications for the development of generic purification processes. Biotechnol. Bioeng. 92, 665–673 (2005).

    Article  CAS  Google Scholar 

  35. Sauer, P.W. et al. A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol. Bioeng. 67, 585–597 (2000).

    Article  CAS  Google Scholar 

  36. Shukla, A.A. et al. Downstream processing of monoclonal antibodies − application of platform approaches. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 848, 28–39 (2007).

    Article  CAS  Google Scholar 

  37. Shepard, C.W., Finelli, L. & Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558–567 (2005).

    Article  Google Scholar 

  38. Soriano, V. et al. Care of patients coinfected with HIV and hepatitis C virus: 2007 updated recommendations from the HCV-HIV international panel. AIDS 21, 1073–1089 (2007).

    Article  Google Scholar 

  39. Patel, K., Muir, A.J. & McHutchison, J.G. Diagnosis and treatment of chronic hepatitis C infection. Br. Med. J. 332, 1013–1017 (2006).

    Article  Google Scholar 

  40. Herr, I., Schemmer, P. & Büchler, M.W. On the TRAIL to therapeutic intervention in liver disease. Hepatology 46, 266–274 (2007).

    Article  CAS  Google Scholar 

  41. Ferenci, P. et al. Predicting sustained virological responses in chronic hepatitis C patients treated with peginterferon α-2a (40 KD)/ribavirin. J. Hepatol. 43, 425–433 (2005).

    Article  CAS  Google Scholar 

  42. Fried, M.W. et al. Peginterferon α-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347, 975–982 (2002).

    Article  CAS  Google Scholar 

  43. Manns, M.P. et al., and the International Hepatitis Interventional Therapy. Peginterferon α-2b plus ribavirin compared with interferon α-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomized trial. Lancet 358, 958–965 (2001).

    Article  CAS  Google Scholar 

  44. Davis, G.L. et al. Early virologic response to treatment with peginterferon α-2b plus ribavirin in patients with chronic hepatitis C. Hepatology 38, 645–652 (2003).

    Article  CAS  Google Scholar 

  45. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).

    Article  CAS  Google Scholar 

  46. Feld, J.J. & Hoofnagle, J.H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436, 967–972 (2005).

    Article  CAS  Google Scholar 

  47. Hadziyannis, S.J. et al. Peginterferon-α2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Intern. Med. 140, 346–355 (2004).

    Article  CAS  Google Scholar 

  48. Bernstein, D. et al. Relationship of health-related quality of life to treatment adherence and sustained response in chronic hepatitis C patients. Hepatology 35, 704–708 (2002).

    Article  Google Scholar 

  49. Rasenack, J. et al. Peginterferon α-2a (40kD) [Pegasys] improves HR-QOL outcomes compared with unmodified interferon α-2a [Roferon-A]: in patients with chronic hepatitis C. Pharmacoeconomics 21, 341–349 (2003).

    Article  CAS  Google Scholar 

  50. Zeuzem, S. Heterogeneous virologic response rates to interferon-based therapy in patients with chronic hepatic C: who responds less well? Ann. Intern. Med. 140, 370–381 (2004).

    Article  CAS  Google Scholar 

  51. Sarrazin, C. et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132, 1767–1777 (2007).

    Article  CAS  Google Scholar 

  52. Affleck, R.P., Vrettos, J.S., Spitznagel, T.M. & Krishnamurthy, R. Thermodynamic evaluation of a fusion protein at various pH conditions by calorimetric and spectroscopic methods. AAPS J. 7(S2), abstract W4019 (2005).

  53. Dhalluin, C. et al. Structural, kinetic, and thermodynamic analysis of the binding of the 40 kDa PEG-interferon-α2a and its individual positional isomers to the extracellular domain of the receptor IFNAR2. Bioconjug. Chem. 16, 518–527 (2005).

    Article  CAS  Google Scholar 

  54. Balan, V. et al. Molecular profiles of drug response in HCV infected patients during the first 4 weeks of therapy for chronic hepatitis C virus with pegylated interferon containing regimens or albuterol. Hepatology 38 (Suppl. 1), 630, abstract no. 984 (2003).

    Article  Google Scholar 

  55. Liu, C. et al. Anti-HCV activity of albinterferon α-2b in cell culture. Hepatol. Res. 37, 941–947 (2007).

    Article  CAS  Google Scholar 

  56. Bain, V.G. et al. A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon α fusion protein in genotype 1 chronic hepatitis C patients. J. Hepatol. 44, 671–678 (2006).

    Article  CAS  Google Scholar 

  57. Balan, V. et al. A Phase I/II study evaluating escalating doses of recombinant human albumin-interferon-α fusion protein in chronic hepatitis C patients who have failed previous interferon-α-based therapy. Antivir. Ther. 11, 35–45 (2006).

    CAS  PubMed  Google Scholar 

  58. Balan, V. et al. Modulation of interferon-specific gene expression by albumin-interferon-α in interferon-α-experienced patients with chronic hepatitis C. Antivir. Ther. 11, 901–908 (2006).

    CAS  PubMed  Google Scholar 

  59. Neumann, A.U. et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282, 103–107 (1998).

    Article  CAS  Google Scholar 

  60. Perelson, A.S., Herrmann, E., Micol, F. & Zeuzem, S. New kinetic models for the hepatitis C virus. Hepatology 42, 749–754 (2005).

    Article  CAS  Google Scholar 

  61. Nelson, D. et al. Sustained virologic response rates with albumin interferon alfa-2b in combination with ribavirin in non-responders to prior interferon therapy: interim results from a phase 2 study. Hepatology 44(Suppl. 1), 611–612, abstract no. 113 (2006).

    Google Scholar 

  62. Zeuzem, S. et al. Antiviral response at week 12 following completion of treatment with albinterferon α-2b plus ribavirin in genotype 1, IFN-naive, chronic hepatitis C patients. J. Hepatol. 46, S293, abstract no. 779 (2007).

    Article  Google Scholar 

  63. McHutchison, J. et al. Interim antiviral and safety data with albumin interferon α-2b combined with ribavirin in a phase 2b study conducted in a genotype 1, IFN-naive, chronic hepatitis C population. Hepatology 44(Suppl. 1), 614, abstract no. 1141 (2006).

    Google Scholar 

  64. Bain, V.G. et al. Comparable antiviral response rates with albumin interferon α-2b dosed at Q2W or Q4W intervals in naive subjects with genotype 2 or 3 chronic hepatitis C. J. Hepatol. 46, 57, abstract no. 9 (2007).

    Article  Google Scholar 

  65. Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–802 (1988).

    Article  Google Scholar 

  66. Pawlotsky, J-M., Chevaliez, S. & McHutchison, J.G. The hepatitis C virus life cycle as target for new antiviral therapies. Gastroenterology 132, 1979–1998 (2007).

    Article  CAS  Google Scholar 

  67. Forestier, N. et al. Antiviral activity of telaprevir (VX-950) and peginterferon α-2a in patients with hepatitis C. Hepatology 46, 640–648 (2007).

    Article  CAS  Google Scholar 

  68. Pawlotsky, J-M. Treating hepatitis C in “difficult-to-treat” patients. N. Engl. J. Med. 351, 422–423 (2004).

    Article  CAS  Google Scholar 

  69. Wursthorn, K. et al. Peginterferon α-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B. Hepatology 44, 675–684 (2006).

    Article  CAS  Google Scholar 

  70. Gómez-Benito, M. et al. Mechanism of apoptosis induced by IFN-α in human myeloma cells: role of Jak1 and Bim and potentiation by rapamycin. Cell. Signal. 19, 844–854 (2007).

    Article  Google Scholar 

  71. Yen, T.S. Nuclear factor κB and hepatitis C—is there a connection? Hepatology 31, 785–787 (2000).

    Article  CAS  Google Scholar 

  72. Ryan, C.W. et al. Sorafenib with interferon α-2b as first-line treatment of advanced renal carcinoma: a phase II study of the Southwest Oncology Group. J. Clin. Oncol. 25, 3296–3301 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank BioScience Communications, New York, for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mani Subramanian.

Ethics declarations

Competing interests

G.M.S., A.L.-S. and M.F. are employees of Human Genome Sciences, Inc. S.Z. and J.G.M. are clinical investigators and consultants for Human Genome Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, G., Fiscella, M., Lamousé-Smith, A. et al. Albinterferon α-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol 25, 1411–1419 (2007). https://doi.org/10.1038/nbt1364

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing